<p>Dutch windmill graph [1, 2] and denoted by <em>Dnm</em>. Order and size of Dutch windmill graph are (<em>n</em>−1)<em>m</em>+1 and mn respectively. In this paper, we computed certain topological indices and polynomials i.e. Zagreb polynomials, hyper Zagreb, Redefined Zagreb indices, modified first Zagreb, Reduced second Zagreb, Reduced Reciprocal Randi´c, 1st Gourava index, 2nd Gourava index, 1st hyper Gourava index, 2nd hyper Gourava index, Product connectivity Gourava index, Sum connectivity Gourava index, Forgotten index, Forgotten polynomials, <em>M</em>-polynomials and some topological indices in term of the <em>M</em>-polynomials i.e. 1st Zagreb index, 2nd Zagreb index, Modified 2nd Zagreb, Randi´c index, Reciprocal Randi´c index, Symmetric division, Harmonic index, Inverse Sum index, Augmented Zagreb index for the semitotal-point graph and line graph of semitotal-point graph for Dutch windmill graph.</p>
A chemical invariant of graphical structure Z is a unique value characteristic that remains unchanged under graph automorphisms. In the study of QSAR/QSPR, like many other chemical invariants, reciprocal degree distance has played a significant role to estimate the bioactivity of several compounds in chemistry. Reciprocal degree distance is a chemical invariant, which is the degree weighted version of Harary index, i.e., ℛ D D Z = 1 / 2 ∑ μ , ν ∈ V Z ( d Z μ + d Z ν / d Z μ , ν ) . Eliasi and Taeri proposed four new graphic unary operations: S Z , ℛ Z , Q Z , and T Z , frequently implemented in sum of graphs, symbolized as Z 1 + Z 2 ℱ , i.e., sum of two graphs ℱ Z 1 , Z 2 ; ℱ is one of the unary graphic operations S , ℛ , Q , T . This work provides constraints for the above-mentioned invariant for this binary graphic operation F-sum of graphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.