Short half-life is one of the key challenges in the field of therapeutic peptides. Various studies have reported enhancement in the stability of peptides using methods like chemical modifications, D-amino acid substitution, cyclization, replacement of labile aminos acids, etc. In order to study this scattered data, there is a pressing need for a repository dedicated to the half-life of peptides. To fill this lacuna, we have developed PEPlife (http://crdd.osdd.net/raghava/peplife), a manually curated resource of experimentally determined half-life of peptides. PEPlife contains 2229 entries covering 1193 unique peptides. Each entry provides detailed information of the peptide, like its name, sequence, half-life, modifications, the experimental assay for determining half-life, biological nature and activity of the peptide. We also maintain SMILES and structures of peptides. We have incorporated web-based modules to offer user-friendly data searching and browsing in the database. PEPlife integrates numerous tools to perform various types of analysis such as BLAST, Smith-Waterman algorithm, GGSEARCH, Jalview and MUSTANG. PEPlife would augment the understanding of different factors that affect the half-life of peptides like modifications, sequence, length, route of delivery of the peptide, etc. We anticipate that PEPlife will be useful for the researchers working in the area of peptide-based therapeutics.
This paper describes a web server developed for designing therapeutic peptides with desired half-life in blood. In this study, we used 163 natural and 98 modified peptides whose half-life has been determined experimentally in mammalian blood, for developing in silico models. Firstly, models have been developed on 261 peptides containing natural and modified residues, using different chemical descriptors. The best model using 43 PaDEL descriptors got a maximum correlation of 0.692 between the predicted and the actual half-life peptides. Secondly, models were developed on 163 natural peptides using amino acid composition feature of peptides and achieved a maximum correlation of 0.643. Thirdly, models were developed on 163 natural peptides using chemical descriptors and attained a maximum correlation of 0.743 using 45 selected PaDEL descriptors. In order to assist researchers in the prediction and designing of half-life of peptides, the models developed have been integrated into PlifePred web server (http://webs.iiitd.edu.in//raghava/plifepred/).
TopicalPdb (http://crdd.osdd.net/raghava/topicalpdb/) is a repository of experimentally verified topically delivered peptides. Data was manually collected from research articles. The current release of TopicalPdb consists of 657 entries, which includes peptides delivered through the skin (462 entries), eye (173 entries), and nose (22 entries). Each entry provides comprehensive information related to these peptides like the source of origin, nature of peptide, length, N- and C-terminal modifications, mechanism of penetration, type of assays, cargo and biological properties of peptides, etc. In addition to natural peptides, TopicalPdb contains information of peptides having non-natural, chemically modified residues and D-amino acids. Besides this primary information, TopicalPdb stores predicted tertiary structures as well as peptide sequences in SMILE format. Tertiary structures of peptides were predicted using state-of-art method PEPstrMod. In order to assist users, a number of web-based tools have been integrated that includes keyword search, data browsing, similarity search and structural similarity. We believe that TopicalPdb is a unique database of its kind and it will be very useful in designing peptides for non-invasive topical delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.