Cloud Computing uses Hadoop framework for processing BigData in parallel. The Hadoop Map Reduce programming paradigm used in the context of Big Data, is one of the popular approaches that abstract the characterstics of parallel and distributed computing which comes off as a solution to Big Data. Improving performance of Map Reduce is a major concern as it affects the energy efficiency. Improving the energy efficiency of Map Reduce will have significant impact on energy savings for data centers. There are many parameters that influence the performance of Map Reduce . Various parameters like scheduling, resource allocation and data flow have a significant impact on Map Reduce performance. Cloud Computing leverages Hadoop framework for processing BigData in parallel. Hadoop has certain limitations that could be exploited to execute the job efficiently. Efficient resource allocation remains a challenge in Cloud Computing MapReduce platforms. We propose a methodology which is an enhanced Hadoop architecture that reduces the computation cost associated with BigData analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.