IntroductionMany emergency department (ED) patients have symptoms that may be attributed to arrhythmias, necessitating outpatient ambulatory cardiac monitoring. Consensus is lacking on the optimal duration of monitoring. We describe the use of a novel device applied at ED discharge that provides continuous prolonged cardiac monitoring.MethodsWe enrolled discharged adult ED patients with symptoms of possible cardiac arrhythmia. A novel, single use continuous recording patch (Zio®Patch) was applied at ED discharge. Patients wore the device for up to 14 days or until they had symptoms to trigger an event. They then returned the device by mail for interpretation. Significant arrhythmias are defined as: ventricular tachycardia (VT) ≥4 beats, supraventricular tachycardia (SVT) ≥4 beats, atrial fibrillation, ≥3 second pause, 2nd degree Mobitz II, 3rd degree AV Block, or symptomatic bradycardia.ResultsThere were 174 patients were enrolled and all mailed back their devices. The average age was 52.2 (± 21.0) years, and 55% were female. The most common indications for device placement were palpitations 44.8%, syncope 24.1% and dizziness 6.3%. Eighty-three patients (47.7%) had ≥1 arrhythmias and 17 (9.8%) were symptomatic at the time of their arrhythmia. Median time to first arrhythmia was 1.0 days (IQR 0.2–2.8) and median time to first symptomatic arrhythmia was 1.5 days (IQR 0.4–6.7). 93 (53.4%) of symptomatic patients did not have any arrhythmia during their triggered events. The overall diagnostic yield was 63.2%ConclusionThe Zio®Patch cardiac monitoring device can efficiently characterize symptomatic patients without significant arrhythmia and has a higher diagnostic yield for arrhythmias than traditional 24–48 hour Holter monitoring. It allows for longer term monitoring up to 14 days.
Methylene blue (MB) (3,7-bis (dimethylamino)-phenothiazin-5-ium chloride) is a harmful pollutant and has been long been known for its detrimental effects on human health. Over the recent years, many strategies including reduction, oxidation, biological and photochemical degradation have been reported for converting this harmful dye into commercially useful products. Among the aforementioned strategies, the nanocatalytic reduction of MB into its reduced counterpart, i.e. leucomethylene blue, is considered more preferable because it has been reported to have numerous applications in various industrial fields in the academic literature. The reduction of MB is the kinetically unfavorable reaction. Henceforth, various nanocatalytic systems utilizing different kinds of stabilization mediums have reportedly been used for speeding up this particular reaction. This article attempts to not only describe the fundamental properties of the reduction reaction of MB but also present the classification of the recently reported nanocatalytic assemblies on the basis of the utilized supporting medium. Various techniques used for the characterization of nanocatalytic systems reported for the reduction of MB have been summarized in this review. The thermodynamics, kinetics and mechanistic studies of this nanocatalytic reaction have also been narrated here. This critical review has been written comprehensively to abridge the recent research progress in the assemblage of nanocatalytic systems used for the reduction of MB and to propose some new ideas for further development in this area.
Background: The ability to monitor kidney function after transplantation is one of the major factors to improve care of patients.Objective: Authors recommend a computerized texture analysis using run-length matrix features for detection of changes in kidney tissue after allograft in ultrasound imaging.Material and Methods: A total of 40 kidney allograft recipients (28 male, 12 female) were used in the proposed computer-aided diagnosis system. Of the 40 patients, 23 and 17 patients showed increased serum creatinine (sCr) (increased group) and decreased sCr (decreased group), respectively. Twenty run-length matrix features were used for texture analysis in three normalizations. Correlations of texture features with serum creatinine (sCr) level and differences between before and after follow-up for each group were analyzed. An area under the receiver operating characteristic curve (Az) was measured to evaluate potential of proposed method.Results: The features under default and 3sigma normalization schemes via linear discriminant analysis (LDA) showed high performance in classifying decreased group with an Az of 1. In classification of the increased group, the best performance gains were determined in the 3sigma normalization schemes via LDA with an Az of 0.974 corresponding to 95.65% sensitivity, 91.30% specificity, 93.47% accuracy, 91.67% PPV, and 95.45% NPV.Conclusion: Run-length matrix features not only have high potential for characterization but also can help physicians to diagnose kidney failure after transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.