Many geographical constraints and aesthetic concerns necessitate the partial use of cable sections in the High Voltage DC (HVDC) transmission line, resulting in a mixed transmission line. The overhead sections of mixed lines are exposed to lightning strikes. The lightning strikes can not only result in flashover of overhead line (OHL) insulators but can enter the cable and permanently damage its insulation if adequate insulation coordination measures are not taken. In this work, we have analyzed the factors that affect the level of overvoltage inside the cable by simulating a fast front model in PSCAD. It has been determined that surge arresters must be provided at cable terminals when the length of cable sections is less than 16 km to limit the core-ground overvoltage within the lightning impulse protective level (LIPL). The level of sheath-ground overvoltage is independent of the length of cable; however, it can be limited within LIPL by lowering the sheath grounding impedance to 1.2 Ω. Insulation coordination measures do not impact the likelihood of OHL insulators’ flashover. The flashover performance of OHL can be improved by lowering the footing impedance of the second tower closest to the cable terminals, which is otherwise most likely to flashover.
Bipolar lightning strokes are associated with multiple polarity electrical discharge with no current intervals in between, making their behavior quite peculiar. This work presents a fast front analysis of a mixed high voltage direct current (HVDC) transmission link, evaluating the factors that influence the line transients due to shielding failures and back flashovers (BFOs), considering both overvoltage and repeated polarity reversal at the cable sending terminal. The research process includes a detailed modeling of a bipolar lightning stroke, frequency-dependent HVDC overhead, and underground transmission line sections. Noticeable findings include the occurrence of only a positive polarity insulator BFO for the adjacent and subsequent tower, despite the dual polarity of the lightning stroke with relatively small values for the lightning parameters. The influence of traveling waves on the insulator flashover performance of the line with varying parameters (such as the riser section length, the tower grounding impedance, and the location of the lightning stroke) is recorded and explained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.