The standard of care for first-tier clinical investigation of the aetiology of congenital malformations and neurodevelopmental disorders is chromosome microarray analysis (CMA) for copy-number variations (CNVs), often followed by gene(s)-specific sequencing searching for smaller insertion–deletions (indels) and single-nucleotide variant (SNV) mutations. Whole-genome sequencing (WGS) has the potential to capture all classes of genetic variation in one experiment; however, the diagnostic yield for mutation detection of WGS compared to CMA, and other tests, needs to be established. In a prospective study we utilised WGS and comprehensive medical annotation to assess 100 patients referred to a paediatric genetics service and compared the diagnostic yield versus standard genetic testing. WGS identified genetic variants meeting clinical diagnostic criteria in 34% of cases, representing a fourfold increase in diagnostic rate over CMA (8%; P value=1.42E−05) alone and more than twofold increase in CMA plus targeted gene sequencing (13%; P value=0.0009). WGS identified all rare clinically significant CNVs that were detected by CMA. In 26 patients, WGS revealed indel and missense mutations presenting in a dominant (63%) or a recessive (37%) manner. We found four subjects with mutations in at least two genes associated with distinct genetic disorders, including two cases harbouring a pathogenic CNV and SNV. When considering medically actionable secondary findings in addition to primary WGS findings, 38% of patients would benefit from genetic counselling. Clinical implementation of WGS as a primary test will provide a higher diagnostic yield than conventional genetic testing and potentially reduce the time required to reach a genetic diagnosis.
Studies of genomic copy number variants (CNVs) have identified genes associated with autism spectrum disorder (ASD) and intellectual disability (ID) such as NRXN1, SHANK2, SHANK3 and PTCHD1. Deletions have been reported in PTCHD1 however there has been little information available regarding the clinical presentation of these individuals. Herein we present 23 individuals with PTCHD1 deletions or truncating mutations with detailed phenotypic descriptions. The results suggest that individuals with disruption of the PTCHD1 coding region may have subtle dysmorphic features including a long face, prominent forehead, puffy eyelids and a thin upper lip. They do not have a consistent pattern of associated congenital anomalies or growth abnormalities. They have mild to moderate global developmental delay, variable degrees of ID, and many have prominent behavioral issues. Over 40% of subjects have ASD or ASD-like behaviors. The only consistent neurological findings in our cohort are orofacial hypotonia and mild motor incoordination. Our findings suggest that hemizygous PTCHD1 loss of function causes an X-linked neurodevelopmental disorder with a strong propensity to autistic behaviors. Detailed neuropsychological studies are required to better define the cognitive and behavioral phenotype.
Craniosynostosis is a clinically and genetically heterogeneous condition. Knowledge of the specific genetic diagnosis in patients presenting with this condition is important for surgical and medical management. The most common single gene causes of syndromic craniosynostosis are mutations in FGFR1, FGFR2, FGFR3, TWIST1, and EFNB1. Recently, a new single gene cause of craniosynostosis was published, together with phenotype data that highlight the clinical importance of making this specific molecular diagnosis. Phenotypic features of "ERF-related craniosynostosis" include sagittal or multiple-suture synostosis, Chiari malformation, and language delay. In order to determine the contribution of ERF mutations to genetically undiagnosed patients with craniosynostosis, we sequenced the coding regions of ERF in 40 patients with multi-suture or sagittal suture synostosis. We identified heterozygous ERF mutations in two individuals (5%). One mutation positive individual had pansynostosis, while the second had bilateral coronal and metopic synostosis. Both presented in infancy or childhood (age 3 months, and 6 years 9 months, respectively). One had CNS abnormalities including Chiari I malformation. Dysmorphic features included hypertelorism, proptosis, depressed nasal bridge, and retrognathia, in keeping with previously reported cases. The individuals did not require repeated cranial surgeries. ERF-related craniosynostosis should be suspected in patients presenting with multiple suture or sagittal synostosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.