Bioprinting offers tremendous potential in the fabrication of functional tissue constructs for replacement of damaged or diseased tissues. Among other fabrication methods used in tissue engineering, bioprinting provides accurate control over the construct's geometric and compositional attributes using an automated approach. Bioinks are composed of the hydrogel material and living cells that are critical process variables in the fabrication of functional, mechanically robust constructs. Appropriate cells can be encapsulated in bioinks to create functional tissue structures. Ideal bioinks are required to undergo a sol–gel transition consuming minimal processing time, and a plethora of chemical and physical crosslinking mechanisms are generally exploited to achieve high shape fidelity and construct stability. In contrast, crosslinking of hydrogel material at rapid rates can cause nozzle clogging, and hence, optimization of the bioink is often necessary. Bioinks can be formulated using natural or synthetic biomaterials, alone or in combination of these biomaterials. Herein, the various bioprinting methods are discussed; the natural, synthetic, or hybrid materials used as bioinks are analyzed; and the challenges, limitations, and future directions concerning the bioprinting technique are appraised.
Nanoscale particles and molecules are a potential different for the treatment of disease because they have distinctive biologic property based on their structure and size, which is different from traditional small-molecule drugs. The antimicrobial mechanisms of silver nanoparticles include the formation of free radicals damaging the bacterial membranes, interactions with DNA, adhesion to cell surface altering the membrane properties, and enzyme damage. In this review, we focus on applications of silver nanoparticles in inhibition of herpes simplex virus.
Aluminium oxide (Al 2 O 3) nanoparticles (AlNPs) are class of metal oxide nanoparticles that have diverse biomedical applications owing to their exceptional physicochemical and structural features such as resistance towards wear, chemicals, mechanical stresses as well as their favourable optical properties and a porous vast surface area. Other reasons for widespread applications of AlNPs are their low cost of preparation and easy handling. Therefore, owing to the economic importance, the recent achievements and possible health risks associated with the biomedical applications of AlNPs are overviewed in this work.
Aim: Dendrimers dendritic structural design holds vast promises, predominantly for drug delivery, owing to their unique properties. Dendritic architecture is widespread topology found in nature and offers development of specific properties of chemical substances. Dendrimers are an ideal delivery vehicle candidate for open study of the effects of polymer size, charge, and composition on biologically relevant properties such as lipid bilayer interactions, cytotoxicity, bio-distribution, internalization, blood plasma retention time, and filtration. This article reviews role of dendrimers in advanced drug delivery and biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.