Colorectal cancer is one of the most common types of cancer with over fifty percent of patients presenting at an advanced stage. Retinoic acid is a metabolite of vitamin A and is essential for normal cell growth and aberrant retinoic acid metabolism is implicated in tumourigenesis. This study has profiled the expression of retinoic acid metabolising enzymes using a well characterised colorectal cancer tissue microarray containing 650 primary colorectal cancers, 285 lymph node metastasis and 50 normal colonic mucosal samples. Immunohistochemistry was performed on the tissue microarray using monoclonal antibodies which we have developed to the retinoic acid metabolising enzymes CYP26A1, CYP26B1, CYP26C1 and lecithin retinol acyl transferase (LRAT) using a semi-quantitative scoring scheme to assess expression. Moderate or strong expression of CYP26A1was observed in 32.5% of cancers compared to 10% of normal colonic epithelium samples (p<0.001). CYP26B1 was moderately or strongly expressed in 25.2% of tumours and was significantly less expressed in normal colonic epithelium (p<0.001). CYP26C1 was not expressed in any sample. LRAT also showed significantly increased expression in primary colorectal cancers compared with normal colonic epithelium (p<0.001). Strong CYP26B1 expression was significantly associated with poor prognosis (HR = 1.239, 95%CI = 1.104–1.390, χ2 = 15.063, p = 0.002). Strong LRAT was also associated with poorer outcome (HR = 1.321, 95%CI = 1.034–1.688, χ2 = 5.039, p = 0.025). In mismatch repair proficient tumours strong CYP26B1 (HR = 1.330, 95%CI = 1.173–1.509, χ2 = 21.493, p<0.001) and strong LRAT (HR = 1.464, 95%CI = 1.110–1.930, χ2 = 7.425, p = 0.006) were also associated with poorer prognosis. This study has shown that the retinoic acid metabolising enzymes CYP26A1, CYP26B1 and LRAT are significantly overexpressed in colorectal cancer and that CYP26B1 and LRAT are significantly associated with prognosis both in the total cohort and in those tumours which are mismatch repair proficient. CYP26B1 was independently prognostic in a multivariate model both in the whole patient cohort (HR = 1.177, 95%CI = 1.020–1.216, p = 0.026) and in mismatch repair proficient tumours (HR = 1.255, 95%CI = 1.073–1.467, p = 0.004).
Adaptive immunity in homeotherms depends greatly on CD4+ Th cells which release cytokines in response to specific antigen stimulation. Whilst bony fish and poikilothermic tetrapods possess cells that express TcR and CD4-related genes (that exist in two forms in teleost fish; termed CD4-1 and CD4-2), to date there is no unequivocal demonstration that cells equivalent to Th exist. Thus, in this study we determined whether CD4-1+ lymphocytes can express cytokines typical of Th cells following antigen specific stimulation, using the zebrafish (Danio rerio). Initially, we analyzed the CD4 locus in zebrafish and found three CD4 homologues, a CD4-1 molecule and two CD4-2 molecules. The zfCD4-1 and zfCD4-2 transcripts were detected in immune organs and were most highly expressed in lymphocytes. A polyclonal antibody to zfCD4-1 was developed and used with an antibody to ZAP70 and revealed double positive cells by immunohistochemistry, and in the Mycobacterium marinum disease model CD4-1+ cells were apparent surrounding the granulomas typical of the infection. Next a prime-boost experiment, using human gamma globulin as antigen, was performed and revealed for the first time in fish that zfCD4-1+ lymphocytes increase the expression of cytokines and master transcription factors relevant to Th1/Th2-type responses as a consequence of boosting with specific antigen.
Identification and characterization of the transcription factors involved in T-cell development, t-bet, stat6 and foxp3, within the zebrafish, Danio rerio IntroductionNaive CD4+ T-cells, on antigenic stimulation, become activated, expand and differentiate into different effector subsets called T-helper (Th) cells. The differentiation of naive T-cells into Th effector cells depends on a variety of stimuli, such as antigen nature, antigen dose and the strength and duration of signals through the T-cell receptor (TCR)-CD3 complex, as well as the cytokine microenvironment which activates the cellular signalling pathways [1]. These Th cell subsets are crucial for the induction of the most appropriate immune response towards a particular pathogen. In mammals, three types of CD4 + Th effector cell populations exist, Th1, Th2 and Th17, characterized by their cytokine repertoire and how they regulate B-cell and T-cell The discovery of cytokines expressed by T-helper 1 (Th1), Th2, Th17 and T-regulatory (T reg ) cells has prompted speculation that these types of responses may exist in fish, arising early in vertebrate evolution. In this investigation, we cloned three zebrafish transcription factors, T-box expressed in T cells (t-bet), signal transducer and activator of transcription 6 (stat6) and fork-head box p3 (foxp3), in which two transcripts are present, that are important in the development of a number of these cell types. They were found within the zebrafish genome, using a synteny approach in the case of t-bet and foxp3. Multiple alignments of zebrafish t-bet, stat6 and foxp3 amino acids with known vertebrate homologues revealed regions of high conservation, subsequently identified to be protein domains important in the functioning of these transcription factors. The gene organizations of zebrafish t-bet and foxp3 were identical to those of the human genes, with the second foxp3 transcript lacking exons 5, 6, 7 and 8. Zebrafish stat6 (21 exons and 20 introns) was slightly different from the human gene, which contained 22 exons and 21 introns. Immunostimulation of zebrafish head kidney and spleen cells with phytohaemagglutinin, lipopolysaccharide or Poly I:C, showed a correlation between the expression of t-bet, stat6 and foxp3 with other genes involved in Th and T reg responses using quantitative PCR. These transcription factors, together with many of the cytokines that are expressed by different T-cell subtypes, will aid future investigations into the Th and T reg cell types that exist in teleosts.Abbreviations foxp3 ⁄ Foxp3, fork-head box p3; IFN-c, interferon-c; IL, interleukin; LPS, lipopolysaccharide; OSBPL7, oxysterol-binding protein-like 7; PHA, phytohaemagglutinin; PPP1R3F, protein phosphatase 1, regulatory (inhibitor) subunit 3F; RACE, rapid amplification of cDNA ends; stat6 ⁄ STAT6, signal transducer and activator of transcription 6; t-bet ⁄ T-bet, T-box expressed in T cells; TCR, T-cell receptor; TGF-b, transforming growth factor-b; Th, T-helper; T reg , T-regulatory. + T-cells that is involved in the r...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.