This paper presents a numerical investigation on the momentum and thermal characteristics of an intercooler connection hose that is in use in the 1.3 SDE 75 CV type FIAT engine. Computational analyses are carried out with ANSYS FLUENT v.12.0.1, where both stationary and vibrating scenarios are handled. The work is structured in accordance with the "Subsystem Functional Description for Charge Air Hoses Fiat 225 Euro 5" FIAT standard, where the air mass flow rate, temperature, and gage pressure at the hose inlet are identified as m Á =0.085 kg/s, T in =90°C, and P in =130 kPa, respectively. In the stationary case, it is determined that the pressure loss value in the air domain of the hose is ΔP K =1.50 kPa; moreover, the corresponding data for the temperature drop is ΔT=0.80°C. Vibration is characterized by employing simple harmonic motion at the engine side of the hose. The fluid-solid interaction methodology showed that pressure loss values grow due to vibration; moreover, the impact of vibration came out to generate diverse fluctuation schemes at different sections of the hose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.