The main issue in working with fresh concrete is the workability during filling of formwork. One of the problems found in workability is occurence of segregation depending on w/c ratio. Segregation is strongly related to w/c ratio. The fresh concrete is usually considered as a non-Newtonian fluid since it is a mixture of aggregate, cement and water. The flow behaviour of the fresh concrete, a characteristic that is strongly related to w/c ratio, plays a crucial role in the quality of high performance concretes. The aggregates in fresh concrete cause segregation in the final product depending on the flow conditions. In this study, the mechanism of segregation in such a system was theoretically investigated. The mould filling of fresh concrete was numerically investigated and aggregates were considered as Lagrange particles. Segregation was identified from trajectories of such particles. Within this framework, fresh concretes with no admixtures (MC) and those with high range water reducer admixtures (HRWRA) (MCS) were investigated. Minimum agregate segregation in fresh concrete mixtures without HRWRA admixtures was observed to have been higher than in mixtures containing HRWRA admixture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.