This paper presents G-DCF, a MAC protocol for wireless LANs that can improve system spectral efficiency of wireless LANs by allowing more concurrent transmissions. The 802.11 DCF creates exposed terminals which are nodes that can transmit successfully but are blocked by carrier sensing. More potential exposed terminals are created when APs are densely placed, limiting spatial reuse of channels and thus system throughput. In order to allow concurrent transmissions from exposed terminals, G-DCF establishes groups in the network. Members of a group are nodes located within the carrier sense range of each other but can transmit packets concurrently. Whenever one member of a group wins the channel and transmits its packet, other nodes in the group also start transmission, triggered by the group ID included in the preamble. Contention window is adjusted according to the group size for fair share of the channel. Performance evaluations show that G-DCF can significantly improve system throughput and fairness over 802.11 DCF, especially when the APs are densely deployed.
This paper presents a medium access control protocol for wireless networks that improves system spectral efficiency using multiple channels. Use of multiple narrow channels has already been proposed as a solution to reduce MAC overhead, but merely dividing a wide channel into narrow channels cannot mitigate the negative effect of packet collisions especially when the network is densely populated. The proposed protocol, called N-DCF, adds protocol support to reduce packet collisions and improve channel utilization. The main idea is to let each node contend on one of the multiple channels and give the node privilege to access other channels when it successfully finishes transmission on its contention channel. When a node gains privilege to a channel, it can access the channel without contention. Privilege is gained probabilistically so that other nodes can have chance to win the channel and obtain privilege for other channels as well. N-DCF reduces channel idle time by conducting random backoff only on one of the narrow channels and reduces packet collisions by assigning contention channel randomly. Idle channels are not wasted because nodes can access other channels once the node wins its contention channel. Performance evaluation shows that the proposed scheme achieves higher throughput than 802.11 DCF without harming the fairness, regardless of node density, packet size, and number of radios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.