In this study, the influence of multilayer graphene content on the green and sintered properties of the multilayer graphene/Copper nanocomposites was investigated. Flake powder metallurgy, as a new production method, was employed to prepare the multilayer graphene reinforced copper matrix nanocomposites. Results showed that the increase in agglomeration content inhibited particle-particle contact during the sintering process and therefore sintered density decreased with increasing the multilayer graphene content. The green density of 8.46 g/cm 3 was found for the monolithic Cu sample, which was 16.4% higher than that of the 5 wt% MLG/ Copper nanocomposites. The high conductivity value (78.5 IACs) was obtained with 0.5 wt% the multilayer graphene reinforced nanocomposites. The electrical conductivity of sintered 5 wt% the multilayer graphene/Copper nanocomposites was 61.48 IACs. When the amount of the multilayer graphene particles as higher than 3 wt%, the decreasing rate in hardness significantly increased. The decreasing rate in the hardness of the multilayer graphene/Copper nanocomposites can be attributed to decrease in density and the non-homogeneous distribution of multilayer graphene particulates in Cu matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.