Many sarcomas and leukemias carry non-random chromosomal translocations encoding mutant fusion transcription factors that are essential to their molecular pathogenesis. These novel, tumor-specific proteins provides a unique opportunity for the development of highly selective anticancer drugs that has yet to be exploited. A particularly clear example is provided by Ewing's Sarcoma Family Tumors (ESFT) which contain a characteristic t(11;22) translocation leading to expression of the oncogenic fusion protein EWS-FLI1. EWS-FLI1 is a disordered protein that precluded standard structure-based small molecule inhibitor design. Using surface plasmon resonance screening, we discovered a lead compound, NSC635437. A derivative compound, YK-4-279, blocks RHA binding to EWS-FLI1, induces apoptosis in ESFT cells, and reduces the growth of ESFT orthotopic xenografts. These findings provide proof of principle that inhibiting the interaction of mutant cancer-specific transcription factors with the normal cellular binding partners required for their oncogenic activity provides a promising strategy for the development of uniquely effective, tumor-specific anticancer agents.
Frizzled polypeptides are integral membrane proteins that recently were shown to function as receptors for Wnt signaling molecules. Here, we report the identification of a novel, secreted 36-kDa protein that contains a region homologous to a putative Wnt-binding domain of
Secreted Frizzled-related protein-1 (sFRP-1) contains a cysteine-rich domain homologous to the putative Wntbinding site of Frizzleds. To facilitate the biochemical and biological analysis of sFRP-1, we developed a mammalian recombinant expression system that yields ϳ3 mg of purified protein/liter of conditioned medium. Using this recombinant protein, we demonstrated that sFRP-1 and Wg (wingless) interact in enzyme-linked immunosorbent and co-precipitation assays. Surprisingly, a derivative lacking the cysteine-rich domain retained the ability to bind Wg. Cross-linking experiments performed with radioiodinated sFRP-1 provided definitive evidence that sFRP-1 and Wg bind directly to each other. Besides detecting a cross-linked complex consistent in size with 1:1 stoichiometry of sFRP-1 and Wg, we also observed a larger complex whose size suggested the presence of a second sFRP-1 molecule. The formation of both complexes was markedly enhanced by an optimal concentration of exogenous heparin, emphasizing the potential importance of heparan-sulfate proteoglycan in Wnt binding and signaling. sFRP-1 exerted a biphasic effect on Wg activity in an armadillo stabilization assay, increasing armadillo level at low concentrations but reducing it at higher concentrations. These results provide new insights about the Wnt binding and biological activity of sFRPs.
The Hedgehog (Hh) pathway is activated in some human cancers, including medulloblastoma. The gliomaassociated oncogene homolog (GLI) transcription factors are critical mediators of the activated Hh pathway, and their expression may be elevated in some tumors independent of upstream Hh signaling. Thus, therapies targeting GLI transcription factors may benefit a wide spectrum of patients with mutations at different nodal points of the Hh pathway. In this study, we present evidence that arsenic trioxide (ATO) suppresses human cancer cell growth and tumor development in mice by inhibiting GLI1. Mechanistically, ATO directly bound to GLI1 protein, inhibited its transcriptional activity, and decreased expression of endogenous GLI target genes.
Consistent with this, ATO inhibited the growth of human cancer cell lines that depended on upregulated GLI expression in vitro and in vivo in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.