This study focuses on tuned liquid dampers (TLDs) using liquids with different characteristics optimized with the adaptive harmony search algorithm (AHS). TLDs utilize the characteristic features of the liquid to absorb the dynamic forces entering the structure and benefit from the sloshing movement and the spring stiffness created by the liquid mass. TLDs have been optimized to investigate the effect of liquid characteristics on the control by analyzing various liquids. For optimization, the memory consideration ratio (HMCR) and fret width (FW) values were adapted from the classical harmony search (HS) algorithm parameters. The TLDs were used on three types of structure models, such as single-story, 10, and 40 stories. The contribution of the liquid characteristics to the damping performance was investigated by optimizing the minimum displacement under seismic excitation. According to the results, it was understood that the liquid density and kinematic viscosity do not affect single-story structures alone. However, two characteristic features should be evaluated together. As the structure mass increases, the viscosity and density become more prominent.
This study focuses on the optimization of tuned liquid dampers (TLDs) by using metaheuristic methods using a natural phenomenon as inspiration. Unlike tuned mass dampers (TMDs), TLDs consist of two parts of bodies that contain the passive liquid that is stationary and the active part of the liquid that involves in sloshing. To optimize the amount of optimum active and passive liquids by finding the best dimensional properties of the liquid tank, a two-degree-of-freedom (DOF) model was used as TLD in the dynamic analysis used in the optimization that aims to reduce the maximum displacement of the structure under earthquake excitations. For this purpose, water, oil, and glycerin liquids were selected for TLD. TLD parameters were optimized with the help of Jaya algorithm, flower pollination algorithm (FPA), harmony search (HS) algorithm, and teaching-learning-based optimization (TLBO). Total acceleration and maximum displacement were evaluated after optimization. The performance of TLD under earthquake excitations has been also compared with TMDs.According to the results, the optimized TLD has a better performance than TMD, and Jaya algorithm has a slightly better performance than the other algorithms.
In this study, a seismic isolator placed on the base of a structure was optimized under various earthquake records using an adaptive harmony search algorithm (AHS). As known, the base-isolation systems with very low stiffness provide a rigid response of superstructure, so it was assumed that the structure is rigid and the base-isolated structure can be considered as a single-degree of freedom structure. By using this assumption, an optimization method that is independent of structural properties but specific to the chosen earthquake excitation set is proposed. By taking three different damping ratio limits and isolator displacement limits, the isolator period and damping ratio were optimized so that the acceleration of the structure was minimized for nine cases. In the critical seismic analysis performed with optimum isolator parameters, the results obtained for different damping ratios and isolator periods were compared. From the results, it is determined that isolators with low damping ratios require more ductility, and as the damping ratio increases, further restriction of the movement of the isolator increases the control efficiency. Thus, it is revealed that increasing the ductility of the isolator is effective in reducing the total acceleration in the structure.
In this study, the tuned liquid damper (TLD) device was optimized by the harmony search (HS) and adaptive harmony search algorithms (AHS). Using the harmony search algorithm, seismic excitations were directed at single and ten-story structures, and TLD parameters were optimized to minimize building movement. To improve design parameters, the optimization process was repeated by adapting the design factors of the harmony search algorithm. For this purpose, both the harmony memory consideration ratio (HMCR) and fret width (FW) were gradually reduced by providing an initial value, and optimum algorithm parameters were obtained. As a result of both optimizations, in a critical seismic analysis, the displacements of the adaptive harmony search showed smaller means and standard deviations than those of the classical harmony search.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.