In the present chapter we study the emergence of global patterns in large groups in first and second-order multi-agent systems, focusing on two ingredients that influence the dynamics: the interaction network and the state space. The state space determines the types of equilibrium that can be reached by the system. Meanwhile, convergence to specific equilibria depends on the connectivity of the interaction network and on the interaction potential. When the system does not satisfy the necessary conditions for convergence to the desired equilibrium, control can be exerted, both on finite-dimensional systems and on their mean-field limit.
This work formulates the problem of defining a model for opinion dynamics on a general compact Riemannian manifold. Two approaches to modeling opinions on a manifold are explored. The first defines the distance between two points using the projection in the ambient Euclidean space. The second approach defines the distance as the length of the geodesic between two agents. Our analysis focuses on features such as equilibria, the long term behavior, and the energy of the system, as well as the interactions between agents that lead to these features. Simulations for specific manifolds, S 1 , S 2 , and T 2 , accompany the analysis. Trajectories given by opinion dynamics may resemble n−body Choreography and are called "social choreography". Conditions leading to various types of social choreography are investigated in R 2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.