Smart scaffolds have a great role in the damaged tissue reconstruction. The aim of this study was developing a scaffold that in addition to its fiber's topography has also content of micro-RNAs (miRNAs), which play a regulatory role during osteogenesis.In this study, we inserted two important miRNAs, including miR-22 and miR-126 in the electrospun polycaprolactone (PCL) nanofibers and after scaffold characterization, osteoinductivity of the fabricated nanofibers was investigated by evaluating of the osteogenic differentiation potential of induced pluripotent stem cells (iPSCs) when grown on miRNAs-incorporated PCL nanofibers (PCL-miR) and empty PCL.MiRNAs incorporation had no effect on the fibers size and morphology, cell attachment, and protein adsorption, although viability and proliferation rate of the human iPSCs were increased after a week in PCL-miR compared to the empty PCL. The results obtained from alkaline phosphatase activity, calcium content, bone-related genes, and proteins expression assays demonstrated that the highest osteogenic markers were observed in iPSCs grown on the PCL-miR compared to the cells cultured on PCL and culture plate. According to the results, miR-incorporated PCL nanofibers could be considered as a promising potential tissue-engineered construct for the treatment of patients with bone lesions and defects.
The purpose of this study was to evaluate an artificial intelligence (AI) system for the classification of axillary lymph nodes on ultrasound compared to radiologists. Ultrasound images of 317 axillary lymph nodes from patients referred for ultrasound guided fine needle aspiration or core needle biopsy and corresponding pathology findings were collected. Lymph nodes were classified into benign and malignant groups with histopathological result serving as the reference. Google Cloud AutoML Vision (Mountain View, CA) was used for AI image classification. Three experienced radiologists also classified the images and gave a level of suspicion score (1–5). To test the accuracy of AI, an external testing dataset of 64 images from 64 independent patients was evaluated by three AI models and the three readers. The diagnostic performance of AI and the humans were then quantified using receiver operating characteristics curves. In the complete set of 317 images, AutoML achieved a sensitivity of 77.1%, positive predictive value (PPV) of 77.1%, and an area under the precision recall curve of 0.78, while the three radiologists showed a sensitivity of 87.8% ± 8.5%, specificity of 50.3% ± 16.4%, PPV of 61.1% ± 5.4%, negative predictive value (NPV) of 84.1% ± 6.6%, and accuracy of 67.7% ± 5.7%. In the three external independent test sets, AI and human readers achieved sensitivity of 74.0% ± 0.14% versus 89.9% ± 0.06% ( p = .25), specificity of 64.4% ± 0.11% versus 50.1 ± 0.20% ( p = .22), PPV of 68.3% ± 0.04% versus 65.4 ± 0.07% ( p = .50), NPV of 72.6% ± 0.11% versus 82.1% ± 0.08% ( p = .33), and accuracy of 69.5% ± 0.06% versus 70.1% ± 0.07% ( p = .90), respectively. These preliminary results indicate AI has comparable performance to trained radiologists and could be used to predict the presence of metastasis in ultrasound images of axillary lymph nodes.
Background The role of next generation sequencing (NGS) for identifying high risk mutations in thyroid nodules following fine needle aspiration (FNA) biopsy continues to grow. However, ultrasound diagnosis even using the American College of Radiology’s Thyroid Imaging Reporting and Data System (TI-RADS) has limited ability to stratify genetic risk. The purpose of this study was to incorporate an artificial intelligence (AI) algorithm of thyroid ultrasound with object detection within the TI-RADS scoring system to improve prediction of genetic risk in these nodules. Methods Two hundred fifty-two nodules from 249 patients that underwent ultrasound imaging and ultrasound-guided FNA with NGS with or without resection were retrospectively selected for this study. A machine learning program (Google AutoML) was employed for both automated nodule identification and risk stratification. Two hundred one nodules were used for model training and 51 reserved for testing. Three blinded radiologists scored the images of the test set nodules using TI-RADS and assigned each nodule as high or low risk based on the presence of highly suspicious imaging features on TI-RADS (very hypoechoic, taller-than-wide, extra-thyroidal extension, punctate echogenic foci). Subsequently, the TI-RADS classification was modified to incorporate AI for T4 nodules while treating T1-3 as low risk and T5 as high risk. All diagnostic predictions were compared to the presence of a high-risk mutation and pathology when available. Results The AI algorithm correctly located all nodules in the test dataset (100% object detection). The model predicted the malignancy risk with a sensitivity of 73.9%, specificity of 70.8%, positive predictive value (PPV) of 70.8%, negative predictive value (NPV) of 73.9% and accuracy of 72.4% during the testing. The radiologists performed with a sensitivity of 52.1 ± 4.4%, specificity of 65.2 ± 6.4%, PPV of 59.1 ± 3.5%, NPV of 58.7 ± 1.8%, and accuracy of 58.8 ± 2.5% when using TI-RADS and sensitivity of 53.6 ± 17.6% (p=0.87), specificity of 83.3 ± 7.2% (p=0.06), PPV of 75.7 ± 8.5% (p=0.13), NPV of 66.0 ± 8.8% (p=0.31), and accuracy of 68.7 ± 7.4% (p=0.21) when using AI-modified TI-RADS. Conclusions Incorporation of AI into TI-RADS improved radiologist performance and showed better malignancy risk prediction than AI alone when classifying thyroid nodules. Employing AI in existing thyroid nodule classification systems may help more accurately identifying high-risk nodules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.