Composites formed by adding nano-scale particles to a polymer matrix results in improving electrical, mechanical, and thermal properties of the composite. Good tribological properties can be obtained for polymers filled with nano-scale fillers compared to that filled with micro-scale particles. The friction and wear resistance of these composites is found to increase with increasing filler concentration. It is also possible to use multi-functional fillers to develop high performance composites which cannot be achieved by using a single filler
Many different control methods for ABS systems have been developed. These methods differ in their theoretical basis and performance under the changes of road conditions. The present review is a part of research project entitled “Intelligent Antilock Brake System Design for Road-Surfaces of Saudi Arabia” In the present paper we review the methods used in the design of ABS systems. We highlight the main difficulties and summarize the more recent developments in their control techniques. Intelligent control systems like fuzzy control can be used in ABS control to emulate the qualitative aspects of human knowledge with several advantages such as robustness, universal approximation theorem and rule-based algorithms
In the present work, an investigation on the application of solar energy to heat a sandy bed impregnated with calcium chloride for recovery of water from atmospheric air is presented. The study also aimed at evaluating the effects of different parameters on the productivity of the system during regeneration. These parameters include system design characteristics and the climatic conditions. An experimental unit has been designed and installed for this purpose in climatic conditions of Taif area, Saudi Arabia. The experimental unit which has a surface area of 0.5 m2, comprises a solar/desiccant collector unit containing sandy bed impregnated with calcium chloride. The sandy layer impregnated with desiccant is subjected to ambient atmosphere to absorb water vapor in the night. During the sunshine period, the layer is covered with glass layer where desiccant is regenerated and water vapor is condensed on the glass surface. Ambient temperature, bed temperature and temperature of glass surface are recorded. Also, the productivity of the system has been evaluated. Desiccant concentration at start of regeneration is selected on the basis of the climatic data of Al-Hada region, which is located at Taif area, Saudi Arabia. Experimental measurements show that about 1.0 liter per m2 of pure water can be regenerated from the desiccant bed at the climatic conditions of Taif. Liquid desiccant with initial concentration of 30% can be regenerated to a final concentration of about 44%. Desiccant concentration at start of regeneration is selected on the basis of the climatic data of Al-Hada region. The climate of Taif city is dry compared with that for Al-Hada region. This method for extracting water from atmospheric air is more suitable for Al-Hada region especially in the fall and winter
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.