International audienceThis paper proposes a general modeling approach for locomotion dynamics of mobile multibody systems containing passive internal degrees of freedom concentrated into (ideal or not) joints and/or distributed along deformable bodies of the system. The approach embraces the case of nonholonomic mobile multibody systems with passive wheels, the pendular climbers, and the locomotion systems bioinspired by animals that exploit the advantages of soft appendages such as fish swimming with their caudal fin or moths that use the softness of their flapping wings to improve flight performance. The paper proposes a general structured modeling approach of MMS with tree-like structures along with efficient computational algorithms of the resulting equations. The approach is illustrated through nontrivial examples such as the 3-D bicycle and a compliant version of the snake-board
This paper presents a hybrid dynamic model of a 3-D aerial insect-like robot. The soft-bodied insect wings modeling is based on a continuous version of the Newton-Euler dynamics where the leading edge is treated as a continuous Cosserat beam. These wings are connected to an insect's rigid thorax using a discrete recursive algorithm based on the Newton-Euler equations. Here we detail the inverse dynamic model algorithm. This version of the dynamic model solves the following two problems involved in any locomotion task: 1 •) it enables the net motion of a reference body to be computed from the known data of internal motions (strain fields); 2 •) it gives the internal torques required to impose these internal (strain fields) motions. The essential fluid effects have been taken into account using a simplified analytical hovering flight aerodynamic model. To facilitate the analysis of numerical results, a visualization tool is developed (see video available at [1]).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.