Per- and polyfluoroalkyl substances (PFAS) are frequently used in the production of rubber and plastic, but little is known about the identity, concentration, or prevalence of PFAS in these products. In this study, a representative sample of plastic- and rubber-containing artificial turf (AT) fields from Stockholm, Sweden, was subjected to total fluorine (TF), extractable organic fluorine (EOF), and target PFAS analysis. TF was observed in all 51 AT samples (ranges of 16–313, 12–310, and 24–661 μg of F/g in backing, filling, and blades, respectively), while EOF and target PFAS occurred in <42% of all samples (<200 and <1 ng of F/g, respectively). A subset of samples extracted with water confirmed the absence of fluoride. Moreover, application of the total oxidizable precursor assay revealed negligible perfluoroalkyl acid (PFAA) formation across all three sample types, indicating that the fluorinated substances in AT are not low-molecular weight PFAA precursors. Collectively, these results point toward polymeric organofluorine (e.g., fluoroelastomer, polytetrafluoroethylene, and polyvinylidene fluoride), consistent with patent literature. The combination of poor extractability and recalcitrance toward advanced oxidation suggests that the fluorine in AT does not pose an imminent risk to users. However, concerns surrounding the production and end of life of AT, as well as the contribution of filling and blades to environmental microplastic contamination, remain.
Per- and polyfluoroalkyl substances (PFAS) are frequently used in the production of rubber and plastic, but little is known about the identity, concentration, or prevalence of PFAS in these products. In this study, a representative sample of plastic- and rubber-containing artificial turf (AT) fields from Stockholm, Sweden, were subjected to total fluorine (TF), extractable organic fluorine (EOF) and target PFAS analysis. TF was observed in all 51 AT samples (range: 16-313, 12-310, and 24-661 µg F/g in backing, filling, and blades, respectively), while EOF and target PFAS occurred in <42% of all samples (<200 and <1 ng F/g, respectively). A subset of samples extracted with water confirmed the absence of fluoride. Moreover, application of the total oxidizable precursor assay revealed negligible perfluoroalkyl acid (PFAA) formation across all three sample types, indicating that the fluorinated substance(s) in AT are not low molecular weight PFAA-precursors. Collectively, these results point towards polymeric organofluorine (e.g. fluoroelastomer, polytetrafluoroethylene, polyvinylidene fluoride), consistent with patent literature. The combination of poor extractability and recalcitrance towards advanced oxidation suggests that the fluorine in AT does not pose an imminent risk to users. However, concerns remain surrounding the production and end-of-life of ATs, as well as the contribution of filling to environmental microplastic contamination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.