Background:
Although empagliflozin was shown to profoundly reduce cardiovascular events in diabetic patients and blunt the decline in cardiac function in nondiabetic mice with established heart failure (HF), the mechanism of action remains unknown.
Methods and Results:
We treated 2 rodent models of HF with 10 mg/kg per day empagliflozin and measured activation of the NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome in the heart. We show for the first time that beneficial effects of empagliflozin in HF with reduced ejection fraction (HF with reduced ejection fraction [HFrEF]; n=30–34) occur in the absence of changes in circulating ketone bodies, cardiac ketone oxidation, or increased cardiac ATP production. Of note, empagliflozin attenuated activation of the NLRP3 inflammasome and expression of associated markers of sterile inflammation in hearts from mice with HFrEF, implicating reduced cardiac inflammation as a mechanism of empagliflozin that contributes to sustained function in HFrEF in the absence of diabetes mellitus. In addition, we validate that the beneficial cardiac effects of empagliflozin in HF with preserved ejection fraction (HFpEF; n=9–10) are similarly associated with reduced activation of the NLRP3 inflammasome. Lastly, the ability of empagliflozin to reduce inflammation was completely blunted by a calcium (Ca
2+
) ionophore, suggesting that empagliflozin exerts its benefit upon restoring optimal cytoplasmic Ca
2+
levels in the heart.
Conclusions:
These data provide evidence that the beneficial cardiac effects of empagliflozin are associated with reduced cardiac inflammation via blunting activation of the NLRP3 inflammasome in a Ca
2+
-dependent manner and hence may be beneficial in treating HF even in the absence of diabetes mellitus.
Tert-butylhydroquinone (tBHQ) has been commonly used as a synthetic food antioxidant to prevent oils and fats from oxidative deterioration and rancidity due to its potent anti-lipid peroxidation activity. In North America, the maximum level of tBHQ allowed in fat products is 0.02% with an acceptable daily intake of 0-0.7 mg/kg body weight. Extensive studies have demonstrated that tBHQ exhibit anti-carcinogenic effect. The ability of tBHQ to induce phase II xenobiotic metabolizing enzymes through an Nrf2-dependent pathway is thought to be responsible for the observed protective effect of tBHQ. It has been proposed that tBHQ enhances Nrf2-mediated transcription by promoting reactive oxygen species-mediated dissociation of Nrf2-Keap1, Nrf2 stabilization, phosphatidylinositol 3-kinase (PI3K)/Akt activity, and MAPK pathway activation. In contrast to the beneficial effects of tBHQ, a number of studies have shown that chronic exposure to tBHQ may induce carcinogenicity. However, the precise mechanisms of tBHQ carcinogenicity are not well understood. The toxicity or carcinogenicity of tBHQ has been attributed to the formation of reactive GSH-conjugates, generation of reactive species, CYP1A1 induction, caspase activation and reduced GSH/ATP levels. This review provides an account of recent mechanisms proposed for both chemoprotective and carcinogenic effect of tBHQ.
Cirrhosis is the end stage of many forms of liver pathologies including hepatitis. The liver is known for its vital role in the processing of xenobiotics, including drugs and toxic compounds. Cirrhosis causes changes in the architecture of the liver leading to changes in blood flow, protein binding, and drug metabolizing enzymes. Drug metabolizing enzymes are primarily decreased due to loss of liver tissue. However, not all enzyme activities are reduced and some are only altered in specific cases. There is a great deal of discrepancy between various reports on cytochrome p450 alterations in liver cirrhosis, likely due to differences in disease severity and other underlying conditions. In general, however, CYP1A and CYP3A levels and related enzyme activities are usually reduced and CYP2C, CYP2A, and CYP2B are mostly unaltered. Both alcohol dehyrogenases and aldehyde dehydrogenases are altered in liver cirrhosis, although the etiology of the disease may determine the expression of alcohol dehydrogenases. Glucuronidation is mainly preserved, but there are a number of factors that determine whether glucuronidation is affected in patients with liver cirrhosis. Low sulphation rates are usually found in patients with liver disease but a decrease in sulfatase activity compensates for the decrease in sulphation rates. In all cases, a reduction in drug metabolizing enzyme activities in liver cirrhosis contributes to decreased clearance of drugs seen in patients with liver abnormalities. The reduction in drug metabolizing enzyme activity must be taken into consideration when adjusting doses, especially in patients with severe liver disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.