To accurately predict tropospheric ozone concentration(O 3 ), it is needed to investigate the variety of artificial intelligence techniques' performance, such as machine learning, deep learning and hybrid models. This research aims to effectively predict the hourly ozone trend via fewer input variables. This ozone prediction attempt is performed on diversity data of air pollutants (NO 2 , NO x , CO, SO 2 ) and meteorological parameters (wind-speed and humidity). The historical datasets are collected from 3 sites in Malaysia. The study's methodology progressed in two paths: standalone and hybrid models where hourly-averaged datasets are applied based on 5-time horizon analysis scenario, with different inputs' combinations. For evaluation, all models are tested throughout 5-performance indicator and illustrated on Modified Taylor diagram. Sensitivity analysis of input variables is quantified. Additionally, uncertainty analysis is conducted to assess their confidence level associated with Willmott Index. Based on R 2 , results indicated that XGBoost has higher accuracy compared to MLP and SVR; meanwhile, LSTM and CNN outweighs XGBoost. In terms of robustness and accuracy, the proposed hybrid model possesses superlative performance compared to all above-mentioned techniques. The proposed model achieved exceptional results as the highest R 2 , the highest 95% confidence degree, and narrower confidence interval width, are 93.48%, 98.16%, and 0.0014195, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.