Seismic imaging is the main technology used for subsurface hydrocarbon prospection. It provides an image of the subsurface using the same principles as ultrasound medical imaging. It is based on emitting a sound (pressure) wave through the subsurface and recording the reflected echoes using hydrophones (pressure sensors) and/or geophones (velocity/acceleration sensors). Contrary to medical imaging, which is done in real time, subsurface seismic imaging is an offline process that involves a huge volume of data and needs considerable computing power. The raw seismic data are heavily contaminated with noise and unwanted reflections that need to be removed before further processing. Therefore, the noise attenuation is done at an early stage and often while acquiring the data. Quality control (QC) is mandatory to give confidence in the denoising process and to ensure that a costly data re-acquisition is not needed. QC is done manually by humans and comprises a major portion of the cost of a typical seismic processing project. It is therefore advantageous to automate this process to improve cost and efficiency. Here, we propose a supervised learning approach to build an automatic QC system. The QC system is an attribute-based classifier that is trained to classify three types of filtering (mild = underfiltering, noise remaining in the data; optimal = good filtering; harsh = overfiltering, the signal is distorted). The attributes are computed from the data and represent geophysical and statistical measures of the quality of the filtering. The system is tested on a full-scale survey (9000 km2) to QC the results of the swell noise attenuation process in marine seismic data. The results are encouraging and helped identify localized issues that were difficult for a human to spot.
We present a novel and practical deep learning pipeline termed Ran-domForestMLP. This core trainable classification engine consists of a convolutional neural network backbone followed by an ensemble-based multi-layer perceptrons core for the classification task. It is designed in the context of self and semi-supervised learning tasks to avoid overfitting while training on very small datasets. The paper details the architecture of the RandomForestMLP and present different strategies for neural network decision aggregation. Then, it assesses its robustness to overfitting when trained on realistic image datasets and compares its classification performance with existing regular classifiers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.