Solid-oxide electrolysis technology (SOEC) can efficiently convert electricity from renewable sources into H 2 via steam electrolysis, or syngas (a mixture of H 2 and CO 2 ) via co-electrolysis of steam and CO 2 . Co-SOEC provides the advantage of better thermal integration for standalone applications or with other industrial processes. In this paper two promising cases are investigated from the perspective of life-cycle assessment to evaluate the potential of reducing carbon emissions: (1) coupling co-SOEC with a cement plant, and (2) integrating co-SOEC into a biomass gasification plant. Life cycle assessment was performed based on the collection of comprehensive information regarding the electricity sources for different scenarios and a sensitivity analysis was included to verify the consistency of the results. The results show that in both cases the co-electrolysis system can be beneficial in terms of reduction of global warming potential, although it depends heavily on the geographic location and on the share of renewable energy. The highest benefits among the cases reviewed were found in the case of a coal-fed cement plant, where annual CO 2 savings reached up to 2.39E+05 tonnes CO 2 -eq in France with 23.6% of the electricity provided by photovoltaics (PV). In Germany, on the other hand, both cases first show benefits when the renewable share reaches a very high percentage of the electricity input: 50% provided by PV for the case of the cement plant and 82% for the case of a biomass-gasification unit. Since electricity input is the main impact concerning power-to-gas applications, the carbon content of the electricity grid mix is very important. As grid mixes become 'cleaner' in the future with more renewable share in the electricity generation in every country, the investigated applications are expected to provide even higher benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.