Breast cancer stem cells (CSCs) are thought to drive recurrence and metastasis. Their identity has been linked to the epithelial to mesenchymal transition (EMT) but remains highly controversial since—depending on the cell-line studied—either epithelial (E) or mesenchymal (M) markers, alone or together have been associated with stemness. Using distinct transcript expression signatures characterizing the three different E, M and hybrid E/M cell-types, our data support a novel model that links a mixed EM signature with stemness in 1) individual cells, 2) luminal and basal cell lines, 3) in vivo xenograft mouse models, and 4) in all breast cancer subtypes. In particular, we found that co-expression of E and M signatures was associated with poorest outcome in luminal and basal breast cancer patients as well as with enrichment for stem-like cells in both E and M breast cell-lines. This link between a mixed EM expression signature and stemness was explained by two findings: first, mixed cultures of E and M cells showed increased cooperation in mammosphere formation (indicative of stemness) compared to the more differentiated E and M cell-types. Second, single-cell qPCR analysis revealed that E and M genes could be co-expressed in the same cell. These hybrid E/M cells were generated by both E or M cells and had a combination of several stem-like traits since they displayed increased plasticity, self-renewal, mammosphere formation, and produced ALDH1+ progenies, while more differentiated M cells showed less plasticity and E cells showed less self-renewal. Thus, the hybrid E/M state reflecting stemness and its promotion by E-M cooperation offers a dual biological rationale for the robust association of the mixed EM signature with poor prognosis, independent of cellular origin. Together, our model explains previous paradoxical findings that breast CSCs appear to be M in luminal cell-lines but E in basal breast cancer cell-lines. Our results suggest that targeting E/M heterogeneity by eliminating hybrid E/M cells and cooperation between E and M cell-types could improve breast cancer patient survival independent of breast cancer-subtype.
Upon stimulation with Th1 cytokines or bacterial lipopolysaccharides, resting macrophages shift their phenotype toward a pro-inflammatory state as part of the innate immune response. LPS-activated macrophages undergo profound metabolic changes to adapt to these new physiological requirements. One key step to mediate this metabolic adaptation is the stabilization of HIF1α, which leads to increased glycolysis and lactate release, as well as decreased oxygen consumption. HIF1 abundance can result in the induction of the gene encoding pyruvate dehydrogenase kinase 1 (PDK1), which inhibits pyruvate dehydrogenase (PDH) via phosphorylation. Therefore, it has been speculated that pyruvate oxidation through PDH is decreased in pro-inflammatory macrophages. However, to answer this open question, an in-depth analysis of this metabolic branching point was so far lacking. In this work, we applied stable isotope-assisted metabolomics techniques and demonstrate that pyruvate oxidation is maintained in mature pro-inflammatory macrophages. Glucose-derived pyruvate is oxidized via PDH to generate citrate in the mitochondria. Citrate is used for the synthesis of the antimicrobial metabolite itaconate and for lipogenesis. An increased demand for these metabolites decreases citrate oxidation through the tricarboxylic acid cycle, whereas increased glutamine uptake serves to replenish the TCA cycle. Furthermore, we found that the PDH flux is maintained by unchanged PDK1 abundance, despite the presence of HIF1. By pharmacological intervention, we demonstrate that the PDH flux is an important node for M(LPS) macrophage activation. Therefore, PDH represents a metabolic intervention point that might become a research target for translational medicine to treat chronic inflammatory diseases.
Enterococcus faecalis is a commensal bacterium and a major opportunistic human pathogen. In this study, we combined in silico predictions with a novel 5′RACE-derivative method coined ‘5′tagRACE’, to perform the first search for non-coding RNAs (ncRNAs) encoded on the E. faecalis chromosome. We used the 5′tagRACE to simultaneously probe and characterize primary transcripts, and demonstrate here the simplicity, the reliability and the sensitivity of the method. The 5′tagRACE is complementary to tiling arrays or RNA-sequencing methods, and is also directly applicable to deep RNA sequencing and should significantly improve functional studies of bacterial RNA landscapes. From 45 selected loci of the E. faecalis chromosome, we discovered and mapped 29 novel ncRNAs, 10 putative novel mRNAs and 16 antisense transcriptional organizations. We describe in more detail the oxygen-dependent expression of one ncRNA located in an E. faecalis pathogenicity island, the existence of an ncRNA that is antisense to the ncRNA modulator of the RNA polymerase, SsrS and provide evidences for the functional interplay between two distinct toxin–antitoxin modules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.