Infection of the central nervous system by Borna disease virus (BDV) provides a unique model to study the mechanisms whereby a persistent viral infection can impair neuronal function and cause behavioral diseases reminiscent of mood disorders, schizophrenia, or autism in humans. In the present work, we studied the effect of BDV infection on the response of hippocampal neurons, the main target for this virus, to the neurotrophin BDNF. We showed that persistent infection did not affect neuronal survival or morphology. However, it blocked BDNF-induced ERK 1/2 phosphorylation, despite normal expression of the TrkB BDNF receptor. In addition, BDNF-induced expression of synaptic vesicle proteins was abrogated, which resulted in severely impaired synaptogenesis and defects in synaptic organization. Thus, we provide the first evidence that a virus can interfere specifically with neurotrophin-regulated neuroplasticity, thereby hampering proper neuronal connectivity. These results may help to understand the behavioral disorders associated with BDV infection.
Survival and maturation of dorsal root ganglia sensory neurons during development depend on target-derived neurotrophins. These target-derived signals must be transmitted across long distances to alter gene expression. Here, we address the possibility that long-range retrograde signals initiated by target-derived neurotrophins activate a specialized transcriptional program. The transcription factor MEF2D is expressed in sensory neurons; we show that expression of this factor is induced in response to target-derived neurotrophins that stimulate the distal axons. We demonstrate that MEF2D regulates expression of an anti-apoptotic bcl-2 family member, bcl-w. Expression of mef2d and bcl-w is stimulated in response to activation of a Trk-dependent ERK5/MEF2 pathway, and our data indicate that this pathway promotes sensory neuron survival. We find that mef2d and bcl-w are members of a larger set of retrograde response genes, which are preferentially induced by neurotrophin stimulation of distal axons. Thus, activation of an ERK5/MEF2D transcriptional program establishes and maintains the cellular constituents of functional sensory circuits.
The hepatitis C virus (HCV) is a major human pathogen. Genetically related viruses in animals suggest a zoonotic origin of HCV. The closest relative of HCV is found in horses (termed equine hepacivirus [EqHV]). However, low EqHV genetic diversity implies relatively recent acquisition of EqHV by horses, making a derivation of HCV from EqHV unlikely. To unravel the EqHV evolutionary history within equid sister species, we analyzed 829 donkeys and 53 mules sampled in nine European, Asian, African, and American countries by molecular and serologic tools for EqHV infection. Antibodies were found in 278 animals (31.5%), and viral RNA was found in 3 animals (0.3%), all of which were simultaneously seropositive. A low RNA prevalence in spite of high seroprevalence suggests a predominance of acute infection, a possible difference from the mostly chronic hepacivirus infection pattern seen in horses and humans. Limitation of transmission due to short courses of infection may explain the existence of entirely seronegative groups of animals. Donkey and horse EqHV strains were paraphyletic and 97.5 to 98.2% identical in their translated polyprotein sequences, making virus/host cospeciation unlikely. Evolutionary reconstructions supported host switches of EqHV between horses and donkeys without the involvement of adaptive evolution. Global admixture of donkey and horse hepaciviruses was compatible with anthropogenic alterations of EqHV ecology. In summary, our findings do not support EqHV as the origin of the significantly more diversified HCV. Identification of a host system with predominantly
Equine influenza virus (EIV) is a major respiratory pathogen of horses despite the availability of equine influenza vaccines. This study aimed to determine genetic evolution of EIV strains in France between 1967 to present. A whole genome comparative analysis was also conducted on recent French strains in order to identify potential factors of pathogenicity. Comparison of French EIV sequences with vaccine and worldwide epidemic strains revealed amino acid substitutions in both haemagglutinin (HA) and neuraminidase, especially within the antigenic sites and/or close to receptor binding sites (HA). Amino acid substitutions were also identified in other genes, mainly the polymerase complex proteins and PB1-F2. Viruses belonging to Eurasian and American lineages have circulated until 2003 and Florida sub-lineage Clade 2 strains predominates since 2005. The last French strain (2015) displayed several specificities in HA suggesting the occurrence of antigenic drift with presence of pathogenic markers in the PA and PB1-F2 genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.