International audienceA method to accurately understand the processes controlling the burning behavior of porous wildland fuels is presented using numerical simulations and laboratory experiments. A multiphase approach has been implemented in OpenFOAM, which is based on the FireFOAM solver for large eddy simulations (LES). Conservation equations are averaged in a control volume containing a gas and a solid phase. Drying, pyrolysis, and char oxidation are described by interaction between the two phases. Numerical simulations are compared to laboratory experiments carried out with porous pine needle beds in the FM Global Fire Propagation Apparatus (FPA). These experiments are used to support the use and the development of submodels that represent heat transfer, pyrolysis, gas-phase combustion, and smoldering processes. The model is tested for different bulk densities, two distinct species and two different radiative heat fluxes used to heat up the samples. It has been possible to reproduce mass loss rates, heat release rates, and temperatures that agree with experimental observations, and to highlight the current limitations of the model
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.