Background and Purpose Diffusion tensor imaging tractography reconstruction of white matter pathways can help guide brain tumor resection. However, DTI tracts are complex mathematical objects and the validity of tractography-derived information in clinical settings has yet to be fully established. To address this issue, we initiated the DTI Challenge, an international working group of clinicians and scientists whose goal was to provide standardized evaluation of tractography methods for neurosurgery. The purpose of this empirical study was to evaluate different tractography techniques in the first DTI Challenge workshop. Methods Eight international teams from leading institutions reconstructed the pyramidal tract in four neurosurgical cases presenting with a glioma near the motor cortex. Tractography methods included deterministic, probabilistic, filtered, and global approaches. Standardized evaluation of the tracts consisted in the qualitative review of the pyramidal pathways by a panel of neurosurgeons and DTI experts and the quantitative evaluation of the degree of agreement among methods. Results The evaluation of tractography reconstructions showed a great inter-algorithm variability. Although most methods found projections of the pyramidal tract from the medial portion of the motor strip, only a few algorithms could trace the lateral projections from the hand, face, and tongue area. In addition, the structure of disagreement among methods was similar across hemispheres despite the anatomical distortions caused by pathological tissues. Conclusions The DTI Challenge provides a benchmark for the standardized evaluation of tractography methods on neurosurgical data. This study suggests that there are still limitations to the clinical use of tractography for neurosurgical decision-making.
BACKGROUND AND PURPOSE Segmentation of human brain structures is crucial for the volumetric quantification of brain disease. Advances in algorithmic approaches have led to automated techniques that save time compared to interactive methods. Recently, the utility and accuracy of template library fusion algorithms, such as Local MAP PSTAPLE (PSTAPLE), have been demonstrated but there is little guidance regarding its reproducibility compared to single template‐based algorithms such as FreeSurfer and FSL‐FIRST. METHODS Eight repeated magnetic resonance imagings of 20 subjects were segmented using FreeSurfer, FSL‐FIRST, and PSTAPLE. We reported the reproducibility of segmentation‐derived volume measurements for brain structures and calculated sample size estimates for detecting hypothetical rates of tissue atrophy given the observed variances. RESULTS PSTAPLE had the most reproducible volume measurements for hippocampus, putamen, thalamus, caudate, pallidum, amygdala, Accumbens area, and cortical regions. FreeSurfer was most reproducible for brainstem. PSTAPLE was the most accurate algorithm in terms of several metrics include Dice's coefficient. The sample size estimates showed that a study utilizing PSTAPLE would require tens to hundreds less subjects than the other algorithms for detecting atrophy rates typically observed in brain disease. CONCLUSIONS PSTAPLE is a useful tool for automatic human brain segmentation due to its precision and accuracy, which enable the detection of the size of the effect typically reported for neurological disorders with a substantially reduced sample size, in comparison to the other tools we assessed. This enables randomized controlled trials to be executed with reduced cost and duration, in turn, facilitating the assessment of new therapeutic interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.