Rainfall-runoff processes in a small oil palm catchment (8.2 ha) in Johor, Malaysia were examined. Storm hydrographs show rapid responses to rainfall with a short time to peak. The estimated initial hydrologic loss for the oil palm catchment is 5 mm. Despite the low initial loss, the catchment exhibits a high proportion of baseflow, approximately 54% of the total runoff. On an event basis, the stormflow response factor and runoff coefficient ranges from 0.003 to 0.21, and 0.02 to 0.44, respectively. Peakflow and stormflow volume were moderately correlated with rainfall. The hydrographs were satisfactorily modelled using the Hydrologic Engineering Centre-Hydrologic Modelling System (HEC-HMS). The efficiency indexes of the calibration and validation exercises are 0.81 and 0.82, respectively. Based on these preliminary findings, it could be suggested that an oil palm plantation would be able to serve reasonably well in regulating basic hydrological functions.
Hydrological data of a drained tropical peat catchment have been analysed through conventional quantitative hydrological approaches to characterize its hydrological behaviours and changes due to continuous drainage for a long period. The results show that the hydrology of the catchment is extremely dynamic and the catchment is flashy in nature. A decreasing trend in peak flow amount and an increasing trend in baseflow amount was observed in the catchment, indicating that continuous drainage has reduced the risk of both flooding and water scarcity in the catchment. Correlation analysis among rainfall, runoff and groundwater table reveals that saturation excessnear surface flow is the dominant mechanism responsible for rapid runoff generation in the catchment. Therefore, any physical alterations or disturbances to the upper part of the peat profile would definitely affect the overall hydrological behaviour of the peat catchment.Key words drained peat catchment; rainfall; water table; runoff ratio; tropics Comportement hydrologique d'un bassin versant agricole drainé en zone de tourbière tropicale. 1: Relations entre la pluie, le ruissellement et la nappe Résumé Les données hydrologiques d'un bassin versant tropical drainé en zone de tourbière ont été analysées par des approches hydrologiques quantitatives conventionnelles afin de caractériser son comportement hydrologique et son évolution en réponse au drainage continu pendant une longue période. Les résultats montrent que l'hydrologie la dynamique du bassin versant est très rapide, présentant des crues éclair. Une tendance à la diminution des débits de pointe et à l'augmentation des débits de base a été observée dans le bassin versant, ce qui indique que le drainage continu a permis de réduire à la fois le risque d'inondation et celui de pénurie d'eau. La corrélation entre les précipitations, les eaux de ruissellement et le niveau de la nappe phréatique révèle que l'écoulement de surface par excès de saturation est le mécanisme dominant responsable de la production de ruissellement rapide dans le bassin versant. Par conséquent, toutes les modifications physiques ou perturbations de la partie supérieure du profil de tourbe auraient certainement une incidence sur le comportement hydrologique global de ce bassin versant en zone de tourbière.
Tropical peatlands are among the most carbon-dense ecosystems on Earth, and their water storage dynamics strongly control these carbon stocks. The hydrological functioning of tropical peatlands differs from that of northern peatlands, which has not yet been accounted for in global land surface models (LSMs). Here, we integrated tropical peat-specific hydrology modules into a global LSM for the first time, by utilizing the peatland-specific model structure adaptation (PEATCLSM) of the NASA Catchment Land Surface Model (CLSM). We developed literature-based parameter sets for natural (PEATCLSM Trop,Nat ) and drained (PEATCLSM Trop,Drain ) tropical peatlands. Simulations with PEATCLSM Trop,Nat were compared against those with the default CLSM version and the northern version of PEATCLSM (PEATCLSM North,Nat ) with tropical vegetation input. All simulations were forced with global meteorological reanalysis input data for the major tropical peatland regions in Central and South America, the Congo Basin, and Southeast Asia. The evaluation against a unique and extensive data set of in situ water level and eddy covariance-derived evapotranspiration showed an overall improvement in bias and correlation compared to the default CLSM version. Over Southeast Asia, an additional simulation with PEATCLSM Trop,Drain was run to address the large fraction of drained tropical peatlands in this region. PEATCLSM Trop,Drain outperformed CLSM, PEATCLSM North,Nat , and PEATCLSM Trop,Nat over drained sites. Despite the overall improvements of PEATCLSM Trop,Nat over CLSM, there are strong differences in performance between the three study regions. We attribute these performance differences to regional differences in accuracy of meteorological forcing data, and differences in peatland hydrologic response that are not yet captured by our model. Plain Language SummaryTropical peatlands are wetlands in which plant material accumulates under waterlogged conditions and develops into a dense organic soil layer. Disturbance of their selfregulating hydrology by external factors such as artificial drainage, land use change, and climate change can quickly convert these immense carbon stocks into strong sources of greenhouse gases. Including the hydrology of tropical peatlands into global Earth system models allows us to understand the impact of such external disturbances. We developed the first hydrology modules for natural and drained tropical peatlands to plug into the NASA Goddard Earth Observing System modeling framework. Our results display strong regional differences, and indicate that the accuracy of our model is limited by rainfall data quality and by our understanding of how peatland hydrology differs across the three regions that contain the major tropical peatland areas (Central and South America, the Congo Basin, and Southeast Asia). Nonetheless, simulations
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.