A detailed stratigraphic and geotechnical investigation of the uppermost 50 m below the sea floor was carried out for parts of the German North Sea sector using combined information from shallow seismic reflection surveys, 50‐m‐long sediment cores and cone penetration tests covering an area of ~150 km2. While most recent studies concentrate on unusual features such as buried tunnel‐ or river‐valleys, this study focused on the less well understood, regionally dominant sand units deposited after the retreat of the last glaciers in this region. We identified two sandy units which dominate the late‐ to post‐Saalian geology: (i) the Upper Fluvial Member, believed to be derived from deposition of the Weser, Ems and Elbe palaeorivers as well as other tributaries of the Elbe Palaeovalley in the NE during the Saalian; and (ii) the Aeolian Member, which correlates with periglacial deposits of Weichselian age. Additionally, a Saalian Buried Valley Member believed to comprise fluvial deposit was also identified. Key stratigraphic units within the uppermost 50 m below the sea floor were also identified and mapped. Detailed geotechnical properties were obtained for each of the individual stratigraphic units. The regional extent of the Aeolian and Upper Fluvial Members was documented in the region west of the Elbe Palaeovalley and south of the Dogger Bank, where their geotechnical properties are important for foundation design. In conclusion, the study complements the established regional geotechno‐stratigraphy and offers new and detailed publically accessible information beneficial for offshore wind farm development within the region.
Variations in the physical properties of water column usually impede exact water column height correction on high-resolution seismic data, especially when the data are collected in shallow marine environments. Changes in water column properties can be attributed to variation in tides and currents, wind-generated swells, long and short amplitude wave-fronts, or variation in salinity and water temperature. Likewise, the proper motion of the vessel complicates the determinability of the water column height. This study provides a less time-consuming and precise differential Global Positioning System based methodology that can be applied to most types of high-resolution seismic data in order to significantly improve the tracking and quality of deduced geological interpretations on smaller depth scales. The methodology was tested on geophysical profiles obtained from the German sector of the North Sea. The focus here was to identify, distinguish and classify various sub-surface sedimentary structures in a stratigraphically highly complex shallow marine environment on decimeter small-scale. After applying the correction to the profiles, the sea floor, in general, occurs 1.1 to 3.4 m (mean of 2.2 m) deeper than the uncorrected profiles and is consistent with the sea floor from published tide corrected bathymetry data. The corrected seismic profiles were used in plotting the depth of the base of Holocene channel structures and to define their gradients. The applied correction methodology was also crucial in glacial and post-glacial valley features distinction, across profile correlation and establishing structural and stratigraphic framework of the study area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.