In this paper, the influence of pre-existing crystalline damage, such as cracked or broken cells or soldering failures, as they are frequently observed in operating photovoltaic (PV) plants, on the degradation behavior of mono- and polycrystalline silicon PV modules is investigated. In particular, it is analyzed if and to what extent pre-damage introduced prior to lamination propagates upon stress exposure. Therefore, the pre-damaged modules are exposed to various accelerated aging conditions in order to analyze the impact of the pre-damage on the degradation behavior under the respective aging scenario. In order to separate the influence of the pre-damage from composition-induced influences, the choice of materials used in the modules is varied. These investigations reveal that none of the accelerated aging tests causes any change in the pre-existing damage. In fact, the degradation behavior and rate rather depended on the choice of the module components than on the nature of the pre-damage. Finally, these results are compared with indoor and outdoor results obtained from other studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.