Background
Cyclophosphamide (CP) is one of the potent and low cost chemotherapy used in clinical setting against a variety of tumors. However, its association with nephrotoxicity limits its therapeutic use. Ocimum gratissimum leaf is a medicinal plant with numerous pharmacological and therapeutic efficacies, such as antioxidant, anti-inflammation, and anti-apoptotic properties.
Methods
The present study was designed to evaluate the protective effect of Ocimum gratissimum (OG) against CP-induced kidney dysfunction in rats. Rats were pre-treated with 400 mg/kg b.w. of leave extract of Ocimum gratissimum (Ocimum G.) for 4 days and then 50 mg/kg b.w. of CP was co-administered from day 5 to day 7 along with Ocimum G. Markers of renal function and oxidative stress, food and water intake, electrolytes, aldosterone, leukocytes infiltration, inflammation and histopathological alteration were evaluated.
Results
Obvious renal inflammation and kidney injuries were observed in CP treated groups. However, administration of leave extract of Ocimum G. prevented oxidative stress, kidney injuries, attenuated inflammation, increased aldosterone production and reduced sodium ion and water loss in rats. The plasma creatinine, urea and urine albumin concentration were normalized after the administration of Ocimum G. extract in rats treated with CP. Ocimum G. also decreased the plasma concentrations of Interleukin-(IL)-6, C-reactive protein and activity of myeloperoxidase and malondialdehyde in CP treated rats.
Conclusion
Ocimum G. prevented kidney injury and enhanced renal function via inhibiting inflammation and oxidant-induced CP toxicity. The efficacy of Ocimum G. is related to the presence of various phytochemicals in the plant.
Background
Polycystic ovarian syndrome (PCOS) is pathogenically characterized with hyperandrogenism and metabolic alterations, which often result in ovarian changes and infertility in women of reproductive age. Epigenetic changes have been linked to the development of PCOS. However, the involvement of epigenetic regulator, histone deacetylase (HDAC) in PCOS-driven ovarian dysfunction is not clear. Howbeit, the present study hypothesized that acetate, an HDAC inhibitor (HDACi) would protect against ovarian dysfunction in experimentally induced PCOS.
Materials and methods
Female Wistar rats weighing 120–150 g were randomly divided into four groups (n = 6). The groups received vehicle, sodium acetate (200 mg/kg), letrozole (1 mg/kg) and letrozole with acetate by oral gavage respectively. The administrations were done daily for 21 days.
Results
The rat model of PCOS had increased body weight and ovarian weight, 1-hr postload glucose and plasma insulin, testosterone and LH/FSH ratio as well as reduced insulin sensitivity and plasma 17-β estradiol and sex hormone binding globulin. This model of PCOS in addition showed a significant increase in plasma and ovarian triglyceride, total cholesterol, TNF-α and HDAC, and ovarian malondialdehyde as well as a significant reduction in ovarian glutathione peroxidase/reduced glutathione and NrF2 with the histology of ovarian tissues showing disrupted morphology with significant increase in the number of degenerated follicles compared with control group. These alterations were however attenuated when treated with HDACi, acetate.
Conclusion
Altogether, the present results suggest that acetate protects ovarian function with evidence of normal growing follicles and enhanced circulating 17-β estradiol by inhibition of HDAC.
Barium (Ba) is one of the environmental pollutant metals that incite deleterious effects on human health. The present study investigated the effects of exposure to different doses of barium chloride (BaCl2) on heart and lung of Wistar rats. Rats were exposed to BaCl2 at 150, 300, and 600 mg/L for seven consecutive days. Results indicated that exposure to Ba caused heart and lung damage evidenced by significant increase in plasma lactate dehydrogenase and creatine kinase activities, total cholesterol, triglyceride, and low‐density lipoprotein‐cholesterol levels, while high‐density lipoprotein‐cholesterol level decreased when compared with control. Moreover, BaCl2 significantly decreased superoxide dismutase, catalase, and acetylcholinesterase activities as well as glutathione level in heart and lung of the treated rats. Furthermore, the dose‐dependent increase in cardiac and lung lipid peroxidation, advanced oxidative protein product and nitric oxide levels were accompanied by marked increase in metallothionein in the BaCl2‐treated rats. Administration of BaCl2 altered hematological parameters and significantly increased concentrations of interleukin‐6 in the treated rats. Histology analysis showed significant alteration in the heart and lung tissues of Ba‐treated rats. In conclusion, BaCl2‐induced heart and lung damages via disruption of antioxidant defense systems, and activation of inflammatory mediators and alteration in hematological parameters in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.