The winged bean is an underutilized legume that has the potential to contribute to nutrition and food security globally, especially in sub-Saharan Africa (SSA). However, very little research attention is paid to exploiting its full potential due to a lack of adequate knowledge of the existing genetic diversity in the available winged bean germplasm. To bridge this gap, seed morphometric and selected agro-morphological traits which are crucial for yield and seed quality determination in crop plants were used to assess the genetic diversity of thirty accessions of winged bean sourced from the Gene bank of the International Institute of Tropical Agriculture (IITA), Ibadan. The thirty winged accessions were evaluated under field trials at three agro-ecological zones in Nigeria. The agro-morphological data as well as the seed morphometric dataset obtained from a Multi-Spectral Imaging (MSI) system were subjected to Analysis of Variance (ANOVA), Principal Component (PC) analysis, cluster analysis, and correlation analysis. Significant differences (p < 0.05) were observed among the accessions for all measured traits. The first three PCs accounted for 93% of the variation observed among the accessions for all measured traits. Accessions were grouped into three clusters based on the agro- morphological traits and three clusters under the MSI system. Seed yield per plant had the highest estimates of significant positive correlation with hundred seed weight, pod weight per plant, etc. at both phenotypic and genotypic levels. TPt-31 had the highest seed yield per plant, pod weight per plant, and early maturity while TPt-7 had an extended flowering and maturity period, the highest number of pods per peduncle and pods per plant as well as the lowest seed yield. These accessions could serve as a good resource for future winged bean improvement programs. The result also confirmed that the MSI system is an invaluable tool for discriminating among accessions of the same crop species.
The capability of winged bean to support food and nutrition security in sub-Saharan Africa is recurrently being affected by several constraints, which include a lack of genetic improvement. The dearth of adequate information on the level of available genetic diversity in winged bean germplasm has been a major setback in planning appropriate improvement programs. Fifteen winged bean accessions were assessed for genetic diversity using 10 quantitative traits and 10 simple sequence repeat (SSR) markers. The accessions were laid out in RCBD with three replicates for two growing seasons. Leaf samples were obtained from 10 plants representing each accession for SSR marker genotyping. The accessions exhibited significant (p < 0.05) differences for measured traits. Broad-sense heritability estimates varied from 10.31% for days to first plant maturity to 72.67% for pod weight. Pod weight had a positive and significant correlations with pod length (0.53, p < 0.05), pod width (0.70, p < 0.01), and number of seeds per pod (0.64, p < 0.01). However, the number of seeds per pod was negatively correlated with days to maturity (−0.71, p < 0.01). Number of seeds per pod was positively predicted by pod weight, seed thickness, and days to maturity. Cluster analysis delineated the accessions into two distinct groups. Average number of alleles of 4.2, gene diversity of 0.25, and polymorphic information content of 0.22 were recorded. Analysis of molecular variance revealed intra-accession variation of 95% as compared to inter-accession variation of 5%. Two primary genetic groups were identified and only three accessions, namely TPt-6, TPt-126, and TPt-48, showed genetic purity. The results of this study provide the basis for exploiting the existing diversity for winged bean improvement.
Winged bean [Psophocarpus tetragonolobus (L.) DC.] is an underutilized legume with the potential to contribute to nutrition and food security globally, particularly in sub-Saharan Africa (SSA). However, more attention needs to be paid to exploiting its full potential due to a lack of adequate knowledge of the existing genetic diversity in the available winged bean germplasm. To bridge this gap, thirty accessions of winged beans sourced from the Gene Bank of the International Institute of Tropical Agriculture (IITA), Ibadan, were evaluated for seed morphometric and selected agro-morphological traits at three agro-ecological zones in Nigeria. The data obtained were subjected to analysis of variance (ANOVA), principal component (PC) analysis, cluster analysis, and correlation analysis. Significant differences (p < 0.05) were observed among the accessions for all measured traits. The first two PCs accounted for 88.2% of the variation observed among the accessions for all measured traits. Accessions were grouped into three clusters based on the agro-morphological traits and three clusters under the multi-spectral imaging (MSI) system. TPt-31 had the highest seed yield per plant, pod weight per plant, and early maturity, while TPt-7 had an extended flowering and maturity period, the highest number of pods per peduncle and pods per plant, as well as the lowest seed yield. These accessions could be a good resource for future winged bean improvement programs. The result also confirmed that the MSI system is an invaluable tool for discriminating among accessions of the same crop species. The findings of this study provide insight into the genetic diversity of winged bean germplasm, which could contribute to improving its yield and quality in SSA and globally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.