Example-based texture synthesis is a fundamental topic of many image analysis and computer vision applications. Consequently, its representation is one of the most critical and challenging topics in computer vision and pattern recognition, attracting much academic interest throughout the years. In this paper, a new statistical method to synthesize textures is proposed. It consists in using two indexed random coefficients autoregressive (2D-RCA) models to deal with this problem. These models have a good ability to well detect neighborhood information. Simulations have demonstrated that the 2D-RCA models are very suitable to represent textures. So, in this work, to generate textures from an example, each original image is splitted into blocks which are modeled by the 2D-RCA. The proposed algorithm produces approximations of the obtained blocks images from the original image using the generalized method of moments (GMM). Different sizes of windows have been used. This study offers some important insights into the newly generated image. Satisfying obtained results have been compared to those given by well-established methods. The proposed algorithm outperforms the state-of-the-art approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.