Automatic image annotation is an active field of research in which a set of annotations are automatically assigned to images based on their content. In literature, some works opted for handcrafted features and manual approaches of linking concepts to images, whereas some others involved convolutional neural networks (CNNs) as black boxes to solve the problem without external interference. In this work, we introduce a hybrid approach that combines the advantages of both CNN and the conventional concept-to-image assignment approaches. J-image segmentation (JSEG) is firstly used to segment the image into a set of homogeneous regions, then a CNN is employed to produce a rich feature descriptor per area, and then, vector of locally aggregated descriptors (VLAD) is applied to the extracted features to generate compact and unified descriptors. Thereafter, the not too deep clustering (N2D clustering) algorithm is performed to define local manifolds constituting the feature space, and finally, the semantic relatedness is calculated for both image–concept and concept–concept using KNN regression to better grasp the meaning of concepts and how they relate. Through a comprehensive experimental evaluation, our method has indicated a superiority over a wide range of recent related works by yielding F1 scores of 58.89% and 80.24% with the datasets Corel 5k and MSRC v2, respectively. Additionally, it demonstrated a relatively high capacity of learning more concepts with higher accuracy, which results in N+ of 212 and 22 with the datasets Corel 5k and MSRC v2, respectively.
Accurate building detection is a critical task in urban development and digital city mapping. However, current building detection models for high-resolution remote sensing images are still facing challenges due to complex object characteristics and similarities in appearance. To address this issue, this paper proposes a novel algorithm for building detection based on in-depth feature extraction and classification of adaptive superpixel shredding. The proposed approach consists of four main steps: image segmentation into homogeneous superpixels using a modified Simple Linear Iterative Clustering (SLIC), in-depth feature extraction using an variational auto-encoder (VAE) scale on the superpixels for training and testing data collection, identification of four classes (buildings, roads, trees, and shadows) using extracted feature data as input to an Convolutional Neural Network (CNN), and extraction of building shapes through regional growth and morphological operations. The proposed approach offers more stability in identifying buildings with unclear boundaries, eliminating the requirement for extensive prior segmentation. It has been tested on two datasets of high-resolution aerial images from the New Zealand region, demonstrating superior accuracy compared to previous works with an average F1 score of 98.83%. The proposed approach shows potential for fast and accurate urban monitoring and city planning, particularly in urban areas.
Building detection in aerial or satellite imagery is one of the most challenging tasks due to the variety of shapes, sizes, colors, and textures of man-made objects. To this end, in this paper, we propose a novel approach to extracting buildings in high-resolution images based on prior knowledge of the shadow position. Firstly, the image is split into superpixel patches; the colors and texture features are extracted for those patches. Then using the machine learning method (SVM), four classes are made: buildings, roads, trees, and shadows. According to the prior knowledge of shadows position, a seed point initial has been defined along with an adaptive regional growth method to determine the approximate building location. Finally, applying a contouring process included an open morphological operation to extract the final shape of buildings. The performance is tested on aerial images from New Zealand area. The proposed approach demonstrated higher detection rate precision than other related works, exceeding 97% despite the complexity of scenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.