This paper studies a particular Unmanned Aerial Vehicle (UAV), called QBall 2+ quadcopter. This vehicle is a complex system, non-linear, strongly coupled, and under-actuated. First, a non-linear model was developed to represent the dynamics of the studied drone. Once the latter is established, the linear model was used to obtain the best gains of the Proportional Integral Derivative (PID) controller. This controller was applied after on the non-linear model of the UAV. Moreover, a Sliding Mode Controller (SMC) based on Sliding Mode Observer (SMO) was designed for retrieving the system unknown variables. Through these latter, the QBall 2+ was controlled, taking into account the observer errors. The first contribution in this work is to implement the PID regulator on the QBall 2+ flight controller to validate the results obtained by simulation. Secondly, due to the limitations of the Flex 3 cameras, especially when the drone is outside their working environment, the sliding mode observer was implemented to replace the cameras in order to measure the states of the system considered in this work. Simulation results of the different applied controllers were displayed to evaluate their effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.