The colligative properties of ATP and catecholamines demonstrated in vitro are thought to be responsible for the extraordinary accumulation of solutes inside chromaffin cell secretory vesicles, although this has yet to be demonstrated in living cells. Because functional cells cannot be deprived of ATP, we have knocked down the expression of the vesicular nucleotide carrier, the VNUT, to show that a reduction in vesicular ATP is accompanied by a drastic fall in the quantal release of catecholamines. This phenomenon is particularly evident in newly synthesized vesicles, which we show are the first to be released. Surprisingly, we find that inhibiting VNUT expression also reduces the frequency of exocytosis, whereas the overexpression of VNUT drastically increases the quantal size of exocytotic events. To our knowledge, our data provide the first demonstration that ATP, in addition to serving as an energy source and purinergic transmitter, is an essential element in the concentration of catecholamines in secretory vesicles. In this way, cells can use ATP to accumulate neurotransmitters and other secreted substances at high concentrations, supporting quantal transmission.exocytosis | purines | quantum size | secretory vesicles | VNUT V irtually most, and possibly all, types of secretory vesicles found in cells contain ATP, which often accumulates at high concentrations and, commonly, in conjunction with different types of neurotransmitters. However, the reason for this widespread distribution of ATP remains a mystery. Although ATP is present in all animal species, including primitive life forms like Giardia lamblia that lack Golgi complexes and mitochondria, the detection of ATP in the secretory vesicles of sympathetic neurons was considered to be the first example of cotransmission (1). However, given the ubiquitous accumulation of ATP in secretory vesicles, it might instead be considered that it is the other neurotransmitters that coincide with ATP, rather than the other way around (2). Indeed, perhaps ATP should be considered as the first molecule used as a transmitter in primitive forms of life.Astonishingly high concentrations of releasable species are stored inside secretory vesicles, far exceeding those in the cytosol (3, 4). For example, the catecholamine content of adrenal secretory granules (SGs), a type of large dense core secretory vesicles also known as chromaffin granules, was 0.8-1 M when measured directly in adrenal chromaffin cells using patch amperometry (5, 6). In addition, SGs from chromaffin cells contain ATP at ∼150 mM (7), calcium ∼40 mM (8), about 2 mM of granins, ascorbate, peptides, and other nucleotides, all in an acidic pH ∼5.5 environment.ATP possesses intrinsic chemical characteristics that make it relevant to the accumulation of soluble substances in secretory vesicles. The formation of weak complexes between monoamines and ATP, the two main soluble compounds in chromaffin granules, has been demonstrated in vitro by NMR (9), ultracentrifugation (10), infrared spectroscopy, and calorime...
The accumulation of neurotransmitters within secretory vesicles (SVs) far exceeds the theoretical tonic concentrations in the cytosol, a phenomenon that has captivated the attention of scientists for decades. For instance, chromaffin granules can accumulate close to molar concentrations of catecholamines, along with many other products like ATP, calcium, peptides, chromogranins, ascorbate, and other nucleotides. In this short review, we will summarize the interactions that are currently believed to occur between the elements that make up the vesicular cocktail in the acidic environment of SVs, and how they permit the accumulation of such high concentrations of certain components. In addition, we will examine how the vesicular cocktail regulates the exocytosis of neurotransmitters.
These and our previous data demonstrate that the whole tachykinin system is differentially regulated in leiomyomas. The increased expression of NK1R-Tr might stimulate leiomyoma growth in a similar way to that observed in other steroid-dependent tumors.
This is a repository copy of Glucagon-like peptide-1 receptor controls exocytosis in chromaffin cells by increasing full-fusion events.
Adrenal chromaffin cells release epinephrine (EPI) and norepinephrine (NE) into the bloodstream as part of the homeostatic response to situations like stress. Here we utilized EPI-deficient mice generated by knocking out (KO) the phenylethanolamine N-methyltransferase (Pnmt) gene. These Pnmt-KO mice were bred to homozygosis but displayed no major phenotype. The lack of EPI was partially compensated by an increase in NE, suggesting that EPI storage was optimized in adrenergic cells. Electron microscopy showed that despite the lack of EPI, chromaffin granules retain their shape and general appearance. This indicate that granules from adrenergic or noradrenergic cells preserve their characteristics even though they contain only NE. Acute insulin injection largely reduced the EPI content in wild-type animals, with a minimal reduction in NE, whereas there was only a partial reduction in NE content in Pnmt-KO mice. The analysis of exocytosis by amperometry revealed a reduction in the quantum size (À30%) and I max (À21%) of granules in KO cells relative to the wild-type granules, indicating a lower affinity of NE for the granule matrix of adrenergic cells. As amperometry cannot distinguish between adrenergic or noradrenergic cells, it would suggest even a larger reduction in the affinity for the matrix. Therefore, our results demonstrate that adrenergic cells retain their structural characteristics despite the almost complete absence of EPI. Furthermore, the chromaffin granule matrix from adrenergic cells is optimized to accumulate EPI, with NE being a poor substitute.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.