The development of solution-processable fluorescent small molecules with highly efficient deep-blue electroluminescence is of growing interest for organic light-emitting diode (OLED) applications. However, high-performance deep-blue fluorescent emitters with external quantum efficiencies (EQEs) over 5% are still scarce in OLEDs. Herein, a novel highly soluble oligo(p-phenyleneethynylene)-based small molecule, 1,4-bis((2-cyanophenyl)ethynyl)-2,5-bis(2-ethylhexyloxy)benzene (2EHO–CNPE), is designed, synthesized, and fully characterized as a wide band gap (2.98 eV) and highly fluorescent (ΦPL = 0.90 (solution) and 0.51 (solid-state)) deep-blue emitter. The new molecule is functionalized with cyano (-CN)/2-ethylhexyloxy (-OCH2CH(C2H5)C4H9) electron-withdrawing/-donating substituents, and ethynylene is used as a π-spacer to form an acceptor (A)−π–donor (D)−π–acceptor (A) molecular architecture with hybridized local and charge transfer (HLCT) excited states. Physicochemical and optoelectronic characterizations of the new emitter were performed in detail, and the single-crystal structure was determined. The new molecule adopts a nearly coplanar π-conjugated framework packed via intermolecular “C–H···π” and “C–H···N” hydrogen bonding interactions without any π–π stacking. The OLED device based on 2EHO–CNPE shows an EQEmax of 7.06% (EQE = 6.30% at 200 cd/m2) and a maximum current efficiency (CEmax) of 5.91 cd/A (CE = 5.34 cd/A at 200 cd/m2) with a deep-blue emission at CIE of (0.15, 0.09). The electroluminescence performances achieved here are among the highest reported to date for a solution-processed deep-blue fluorescent small molecule, and, to the best of our knowledge, it is the first time that a deep-blue OLED is reported based on the oligo(p-phenyleneethynylene) π-framework. TDDFT calculations point to facile reverse intersystem crossing (RISC) processes in 2EHO–CNPE from high-lying triplet states to the first singlet excited state (T2/T3 → S1) (hot-exciton channels) that enable a high radiative exciton yield (ηr ∼ 69%) breaking the theoretical limit of 25% in conventional fluorescent OLEDs. These results demonstrate that properly designed fluorescent oligo(p-phenyleneethynylenes) can be a key player in high-performance deep-blue OLEDs.
A novel oligo(p-phenyleneethynylene)-based hot-exciton molecule with hybridized local and charge transfer (HLCT) excited states was developed to yield high radiative exciton yields in OLEDs.
Molecular engineering via functionalization has been a great tool to tune noncovalent intermolecular interactions. Herein, we demonstrate three-dimensional highly crystalline nanostructured D(C7CO)-BTBT films via carbonyl-functionalization of a fused thienoacene π-system, and strong Raman signal enhancements in Surface-Enhanced Raman Spectroscopy (SERS) are realized. The small molecule could be prepared on the gram scale with a facile synthesis-purification. In the engineered films, polar functionalization induces favorable out-of-plane crystal growth via zigzag motif of dipolar C = O···C = O interactions and hydrogen bonds, and strengthens π-interactions. A unique two-stage film growth behavior is identified with an edge-on-to-face-on molecular orientation transition driven by hydrophobicity. The analysis of the electronic structures and the ratio of the anti-Stokes/Stokes SERS signals suggests that the π-extended/stabilized LUMOs with varied crystalline face-on orientations provide the key properties in the chemical enhancement mechanism. A molecule-specific Raman signal enhancement is also demonstrated on a high-LUMO organic platform. Our results demonstrate a promising guidance towards realizing low-cost SERS-active semiconducting materials, increasing structural versatility of organic-SERS platforms, and advancing molecule-specific sensing via molecular engineering.
Polycyclic π-conjugated hydrocarbons (PCHs), either unfunctionalized or structurally modified derivatives, have attracted tremendous interest in the past few decades as high-performance semiconductors for use in new generations of organic (opto)electronic...
The realization of π-deficient acceptors and their donor− acceptor copolymers has become a key research focus for the realization of versatile organic optoelectronic materials and devices. Herein, we demonstrate the theoretical design, synthesis, and physicochemical/ optoelectronic characterization of two meso-π-extended/deficient BOD-IPY building blocks (2OD−T2BDY and 2OD−TTzBDY) and a library of donor−acceptor copolymers with low band gap (E g = 1.30−1.35 eV) based on these building blocks. These building blocks, to the best of our knowledge, are the first examples of BODIPYs with meso-π-extension. A library of BODIPY building blocks with varied meso units/substituents is studied to reveal the meso effects on the semiconducting BODIPY's optoelectronic properties. The building blocks showed favorable πacceptor electronic/structural properties with meso-π-delocalized and stabilized LUMOs (ca. −3.6 eV) and large ground-state dipole moments of 4.9−5.5 D. Consistent with the theoretical/experimental π-electronic structures, all copolymers functioned as p-type semiconductors in field-effect transistors and as donor materials in the bulk heterojunction organic photovoltaics. Power conversion efficiencies of up to 4.4% with a short-circuit current of 12.07 mA cm −2 were achieved. This study demonstrates a unique meso-πextension strategy to realize BODIPYs with favorable π-acceptor properties, and our findings could open up future materials design avenues in various organic optoelectronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.