The invasion of extravillous trophoblast cells into the maternal endometrium is one of the key events in human placentation. The ability of these cells to infiltrate the uterine wall and to anchor the placenta to it as well as their ability to infiltrate and to adjust utero-placental vessels to pregnancy depends, among other things, on their ability to secrete enzymes that degrade the extracellular matrix. Most of the latter enzymes belong to the family of matrix metalloproteinases. Their activity is regulated by the tissue inhibitors of matrix metalloproteinases. We have studied the distribution patterns of matrix metalloproteinases-1, -2, -3, and -9 and their inhibitors TIMP-1 and TIMP-2 as compared to the distribution of their substrates along the invasive pathway of extravillous trophoblast of 1st, 2nd, and 3rd trimester placentas by means of light microscopy on paraffin and cryostat sections as well as at the ultrastructural level (only 3rd trimester placenta). The comparison of different methods proved to be necessary, since the immunohistochemical distribution patterns of these soluble enzymes are considerably influenced by the pretreatment of tissues. All three methods revealed immunoreactivities of both, proteinases and their inhibitors, not only intracellularly in the extravillous trophoblast but also extracellularly in its surrounding matrix, the distribution patterns depending on the stage of pregnancy and on the degree of differentiation of trophoblast cells along their invasive pathway. Within the extracellular matrix, immunolocalization of matrix metalloproteinases as well as their inhibitors showed a specific relation to certain extracellular matrix molecules.
BackgroundAsymptomatic carriage of Giardia intestinalis is highly prevalent among children in developing countries, and evidence regarding its role as a diarrhea-causing agent in these settings is controversial. Impaired linear growth and cognition have been associated with giardiasis, presumably mediated by malabsorption of nutrients. In a prospective cohort study, we aim to compare diarrhea rates in pre-school children with and without Giardia infection. Because the study was conducted in the context of an intervention trial assessing the effects of multi-nutrients on morbidity, we also assessed how supplementation influenced the relationship between Giardia and diarrhoea rates, and to what extent Giardia modifies the intervention effect on nutritional status.Methods and FindingsData were collected in the context of a randomized placebo-controlled efficacy trial with 2×2 factorial design assessing the effects of zinc and/or multi-micronutrients on morbidity (n = 612; height-for-age z-score <−1.5 SD). Outcomes measures were episodes of diarrhea (any reported, or with ≥3 stools in the last 24 h) and fever without localizing signs, as detected with health-facility based surveillance. Giardia was detected in stool by enzyme-linked immunosorbent assay. Among children who did not receive multi-nutrients, asymptomatic Giardia infection at baseline was associated with a substantial reduction in the rate of diarrhea (HR 0.32; 0.15–0.66) and fever without localizing signs (HR 0.56; 0.36–0.87), whereas no such effect was observed among children who received multi-nutrients (p-values for interaction 0.03 for both outcomes). This interaction was independent of age, HAZ-scores and distance to the research dispensary. There was no evidence that Giardia modified the intervention effect on nutritional status.ConclusionAlthough causality of the Giardia-associated reduction in morbidity cannot be established, multi-nutrient supplementation results in a loss of this protection and thus seems to influence the proliferation or virulence of Giardia or associated intestinal pathogens.
Childhood anemia is a major global health problem resulting from multiple causes. Iron supplementation addresses iron deficiency anemia but is undesirable for other types of anemia and may exacerbate infections. The peptide hormone hepcidin governs iron absorption; hepcidin transcription is mediated by iron, inflammation, and erythropoietic signals. However, the behavior of hepcidin in populations where anemia is prevalent is not well established. We show that hepcidin measurements in 1313 African children from The Gambia and Tanzania (samples taken in 2001 and 2008, respectively) could be used to identify iron deficiency anemia. A retrospective secondary analysis of published data from 25 Gambian children with either postmalarial or nonmalarial anemia demonstrated that hepcidin measurements identified individuals who incorporated >20% oral iron into their erythrocytes. Modeling showed that this sensitivity of hepcidin expression at the population level could potentially enable simple groupings of individuals with anemia into iron-responsive and non-iron-responsive subtypes and hence could guide iron supplementation for those who would most benefit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.