Abstract:Noise reduces the quality of medical images and raise the difficulties of diagnosis. Although the wavelet transform has already been used in medical noise removal applications extensively, there are many other multi-resolution analysis methods proposed in recent years for denoising. The main goal of this study is comparing the image denoising abilities of some of these methods with wavelet transform. In this paper, image denoising is implemented by a three-stage methodology. Effectiveness of the multiresolution analysis methodologies has been investigated for standard test images beside magnetic resonans, mammography and fundus images. Performances of the transforms are compared by using peak signal to noise ratio, mean square error, mean structural similarity index and feature similarity index. The best results are obtained by tetrolet transform for random and rician noises with the benchmark images. Medical image denoising performance of Tetrolet transform is compared to other multi resolution analysis methods for the first time in the literature with this study. It surpassed ridgelet and haar wavelet transforms while the noise ratio was low. On the other hand, it is seen that curvelet transforms are effectively produce the best results for all rates of noise on medical images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.