Critical role of mitochondria in programmed cell death leads to the design of mitochondriotropic agents as a strategy in regulating apoptosis. For anticancer therapy, stimulation of proapoptotic mitochondrial events in tumor cells and their suppression in surrounding normal cells represents a promising paradigm for new therapies. Different approaches targeting regulation of components of mitochondrial antioxidant system such as Mn-SOD demonstrated significant antitumor efficiency, particularly in combination therapy. This review is focused on a newly discovered early stage of mitochondria-dependent apoptosis -oxidative lipid signaling involving a mitochondria-specific phospholipid cardiolipin (CL). Cytochrome c (cyt c) acts as a CL-specific peroxidase very early in apoptosis. At this stage, the hostile events are still secluded within the mitochondria and do not reach the cytosolic targets. CL oxidation process is required for the release of pro-apoptotic factors into the cytosol. Manipulation of cyt c interactions with CL, inhibition of peroxidase activity, and prevention of CL peroxidation are prime targets for the discovery of anti-apoptotic drugs acting before the "point-of-no-return" in the fulfillment of the cell death program. Therefore, mitochondriatargeted disruptors and inhibitors of cyt c/CL peroxidase complexes and suppression of CL peroxidation represent new strategies in anti-apoptotic drug discovery.
Gastric cancer (GC) is the most common cause of morbidity and mortality because of cancer. Medicinal plants containing polyphenolic compounds have gained importance in anticancer treatment. In this context, carvacrol is a main component of many plants in the family Lamiaceae that are frequently used in folk medicine and a good candidate to investigate for GC treatment. The present study aimed to explore the cytotoxic, genotoxic, apoptotic, and reactive oxygen species (ROS)-generating effects of carvacrol on gastric adenocarcinoma in vitro. For these purposes, human gastric adenocarcinoma (AGS) cells were used and analyzed after 24 h of exposure to carvacrol with different concentrations. The cytotoxicity, ROS generation, glutathione (GSH) level, and genotoxicity were investigated by the ATP cell viability assay, 2',7'-dichlorodihydrofluorescein-diacetate assay, GSH/GSSG-Glo assay, and comet assay, respectively. Apoptosis induction was detected by acridine orange/ethidium bromide staining and western blotting at below the half-maximal growth inhibitory concentration value. Carvacrol showed cytotoxic, genotoxic, apoptotic, ROS generating, and GSH-reducing effects on AGS cells in a dose-dependent manner. There was a close negative relationship between cell viability and ROS level. Carvacrol inhibited the proliferation of AGS cells, suggesting that it could be a novel and strong anticancer agent against the human gastric adenocarcinoma. These results support the interest of natural diet components in the development of therapeutic products for diseases.
The aim of this study was to observe effects of ascorbic acid application on pain, performance status, and survival time in cancer patients. A retrospective cohort of 39 patients with bone metastases treated with radiotherapy was identified. All patients were radiotherapy-resistant. Fifteen patients who received chemotherapy, and 15 patients who received an infusion of 2.5 g ascorbic acid were included in the study. Nine control patients were treated with neither chemotherapy nor vitamin C. Eastern Cooperative Oncology Group Performance Status Scale and Visual Analog Scale were used to determine performance status and pain assessments. Survival time and rate in patients were defined. Statistical analyses were performed to compare the results of groups. Performance status was increased in 4 patients of vitamin C group and 1 patient of chemotherapy group, whereas performance status in control group was decreased. A median reduction of 50% in pain was observed among the patients in the vitamin C group. Median survival time was 10 mo in patients receiving ascorbic acid, whereas the chemotherapy and control groups had a median survival of 2 mo. Intravenous vitamin C application seems to reduce pain in patients in comparison to other patients who did not receive it. Patient performance status and survival rate were increased using vitamin C.
Carvacrol is a natural phenolic compound found in essential oils of Lamiaceae species. In the present study, an attempt has been made to elucidate the mechanism behind the anti-cancer potential of carvacrol on human gastric adenocarcinomas (AGS) by comparing its effects on cancer cells AGS to those on normal human fibroblast (WS-1) cells, in vitro. Cytotoxicity, reactive oxygen species (ROS) generation, glutathione (GSH) levels, genotoxicity, and apoptotic effects of carvacrol (0-600 µM) were studied in both cell lines. Additionally, the effect of high dose carvacrol (100 mg/kg BW) on the oxidative status was investigated in vivo. For this purpose, carvacrol was administered orally to male Wistar rats over a period of 60 days. Rats were weighed regularly. At the end of the experiment, rats were euthanized. Blood and stomach tissues were collected for biochemical and pathological examinations. The in vitro results showed significant differences in cell viability of AGS compared to WS-1 cells exposed to carvacrol. Also the extent of ROS generation, GSH reduction and DNA damage differed significantly between the cell lines studied (P ≤ 0.001). The differences observed were statistically significant at all concentrations applied (P ≤ 0.001). The results found in AGS cells were mirrored in the pathohistological findings obtained from animals of the in vivo experimental group. Changes in body weight, and oxidative stress index for plasma and stomach tissues of animals in this group were found to differ statistically significant from those found in the control group of Wistar rats (P ≤ 0.001). The data obtained from our present study uncovered that carvacrol has the potential to cause toxic effects in both, AGS and WS-1 cells but more effectively in cancer cells than in normal cells. The carvacrol-mediated responses observed in the in vitro and in vivo experiments presented suggest a double-edged pro-oxidative effect. Via this mechanism carvacrol induced cytotoxicity, apoptosis, and DNA damage in a dose-dependent manner in both cancer and normal cells and these activities were higher in cancer cells than those of normal cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.