Since strict separation of working spaces of humans and robots experiences a softening due to recent robotics research achievements, close interaction of humans and robots comes rapidly into reach. In this context, physical human-robot interaction raises a number of questions regarding a desired intuitive robot behavior. The continuous bilateral information and energy exchange requires an appropriate continuous robot feedback. Investigating a cooperative manipulation task, the desired behavior is a combination of an urge to fulfill the task, a smooth instant reactive behavior to human force inputs and an assignment of the task effort to the cooperating agents. In this paper, a formal analysis of human-robot cooperative load transport is presented. Three different possibilities for the assignment of task effort are proposed. Two proposed dynamic role exchange mechanisms adjust the robot's urge to complete the task based on the human feedback. For comparison, a static role allocation strategy not relying on the human agreement feedback is proposed as well. All three role allocation mechanisms are evaluated in a user study that involves large-scale kinesthetic interaction and full-body human motion. Results show tradeoffs between subjective and objective performance measures stating a clear objective advantage of the proposed dynamic role allocation scheme.
The development of robots that can physically cooperate with humans has attained interest in the last decades. Obviously, this effort requires a deep understanding of the intrinsic properties of interaction. Up to now, many researchers have focused on inferring human intents in terms of intermediate or terminal goals in physical tasks. On the other hand, working side by side with people, an autonomous robot additionally needs to come up with in-depth information about underlying haptic interaction patterns that are typically encountered during human-human cooperation. However, to our knowledge, no study has yet focused on characterizing such detailed information. In this sense, this work is pioneering as an effort to gain deeper understanding of interaction patterns involving two or more humans in a physical task. We present a labeled human-human-interaction dataset, which captures the interaction of two humans, who collaboratively transport an object in an haptics-enabled virtual environment. In the light of information gained by studying this dataset, we propose that the actions of cooperating partners can be examined under three interaction types: In any cooperative task, the interacting humans either 1) work in harmony, 2) cope with conflicts, or 3) remain passive during interaction. In line with this conception, we present a taxonomy of human interaction patterns; then propose five different feature sets, comprising force-, velocity-and power-related information, for the classification of these patterns. Our evaluation shows that using a multi-class support vector machine (SVM) classifier, we can accomplish a correct classification rate of 86 percent for the identification of interaction patterns, an accuracy obtained by fusing a selected set of most informative features by Minimum Redundancy Maximum Relevance (mRMR) feature selection method.
We investigate how collaborative guidance can be realized in multimodal virtual environments for dynamic tasks involving motor control. Haptic guidance in our context can be defined as any form of force/tactile feedback that the computer generates to help a user execute a task in a faster, more accurate, and subjectively more pleasing fashion. In particular, we are interested in determining guidance mechanisms that best facilitate task performance and arouse a natural sense of collaboration. We suggest that a haptic guidance system can be further improved if it is supplemented with a role exchange mechanism, which allows the computer to adjust the forces it applies to the user in response to his/her actions. Recent work on collaboration and role exchange presented new perspectives on defining roles and interaction. However existing approaches mainly focus on relatively basic environments where the state of the system can be defined with a few parameters. We designed and implemented a complex and highly dynamic multimodal game for testing our interaction model. Since the state space of our application is complex, role exchange needs to be implemented carefully. We defined a novel negotiation process, which facilitates dynamic communication between the user and the computer, and realizes the exchange of roles using a three-state finite state machine. Our preliminary results indicate that even though the negotiation and role exchange mechanism we adopted does not improve performance in every evaluation criteria, it introduces a more personal and humanlike interaction model.
In human-computer collaboration involving haptics, a key issue that remains to be solved is to establish an intuitive communication between the partners. Even though computers are widely used to aid human operators in teleoperation, guidance, and training, because they lack the adaptability, versatility, and awareness of a human, their ability to improve efficiency and effectiveness in dynamic tasks is limited. We suggest that the communication between a human and a computer can be improved if it involves a decision-making process in which the computer is programmed to infer the intentions of the human operator and dynamically adjust the control levels of the interacting parties to facilitate a more intuitive interaction setup. In this paper, we investigate the utility of such a dynamic role exchange mechanism, where partners negotiate through the haptic channel to trade their control levels on a collaborative task. We examine the energy consumption, the work done on the manipulated object, and the joint efficiency in addition to the task performance. We show that when compared to an equal control condition, a role exchange mechanism improves task performance and the joint efficiency of the partners. We also show that augmenting the system with additional informative visual and vibrotactile cues, which are used to display the state of interaction, allows the users to become aware of the underlying role exchange mechanism and utilize it in favor of the task. These cues also improve the user's sense of interaction and reinforce his/her belief that the computer aids with the execution of the task.
An emerging research problem in assistive robotics is the design of methodologies that allow robots to provide personalized assistance to users. For this purpose, we present a method to learn shared control policies from demonstrations offered by a human assistant. We train a Gaussian process (GP) regression model to continuously regulate the level of assistance between the user and the robot, given the user's previous and current actions and the state of the environment. The assistance policy is learned after only a single human demonstration, i.e. in one-shot. Our technique is evaluated in a one-of-a-kind experimental study, where the machine-learned shared control policy is compared to human assistance. Our analyses show that our technique is successful in emulating human shared control, by matching the location and amount of offered assistance on different trajectories. We observed that the effort requirement of the users were comparable between human-robot and human-human settings. Under the learned policy, the jerkiness of the user's joystick movements dropped significantly, despite a significant increase in the jerkiness of the robot assistant's commands. In terms of performance, even though the robotic assistance increased task completion time, the average distance to obstacles stayed in similar ranges to human assistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.