Catalase (antioxidant enzyme) activity in erythrocytes and serum levels of trace elements (copper, iron, zinc), heavy metals (cadmium, cobalt) and vitamins A (retinol), D (cholecalciferol) and E (atocopherol) were measured in 145 subjects comprising 47 pre-eclamptic pregnant women (PE), 48 healthy pregnant women (HP) and 50 healthy non-pregnant controls (NP). Catalase, vitamins A, D and E and levels of cobalt were significantly lower in the PE group compared with the HP and NP groups, whereas levels of copper, iron and cadmium were significantly higher in the PE group than in the HP and NP groups. Levels of zinc were significantly lower in both the PE and HP groups compared with the NP group. This assessment of oxidant/ antioxidant imbalance in pregnant women could be useful in the early identification of pre-eclampsia and antioxidant supplementation in the early weeks of gestation might be useful.
The correlation of coronary artery disease (CAD) with pro-oxidant/antioxidant balance and oxidative DNA damage was investigated.Seventy-seven patients with CAD and 44 healthy individuals as control were included in this study. The comparative ratios of ubiquinol-10/ubiquinone-10, 8-hydroxy-2'-deoxyguanosine/deoxyguanosine and the level of MDA measured by HPLC and the activities of GPX and SOD by colorimetric approach in blood samples obtained from patients with CAD were unraveled.8-OHdG/dG ratios, serum MDA level and GPX activity were found significantly elevated level in serum of CAD patients compared to control group. The SOD activity was observed in stable levels in CAD patients. Ubiquinol-10/ubiquinone-10 ratio was significantly lower in patients with CAD than the controls.The positive correlation was observed between 8-OHdG/dG ratios in both MDA levels and GPX activity, while the significant negative correlation was seemed between the ratio of 8-OHdG/dG and ubiquinol-10/ ubiquinone-10 as well as MDA levels and ubiquinol-10/ ubiquinone-10 ratio.We conclude that, both the disruption of pro-oxidant/antioxidant balance and oxidative stress in DNA may play an important role in the pathogenesis of coronary artery disease.
Aim: In the present study, we aimed to assess serum concentrations of zinc (Zn), copper (Cu), iron (Fe), cadmium (Cd), lead (Pb), manganese (Mn), vitamins A (retinol), D (cholecalciferol) and E (α-tocopherol) in patients with coronary artery disease (CAD) and to compare with healthy controls.Methods: A total of 30 CAD patients and 20 healthy subjects were included in this study. Atomic absorption spectrophotometry (UNICAM-929) was used to measure heavy metal and trace element concentrations. Serum α-tocopherol, retinol and cholecalciferol were measured simultaneously by high performance liquid chromatography (HPLC).Results: Demographic and baseline clinical characteristics were not statistically different between the groups. Serum concentrations of retinol (0.3521±0.1319 vs. 0.4313±0.0465 mmol/I, p=0.013), tocopherol (3.8630±1.3117 vs. 6.9124±1.0577 mmol/I, p<0.001), cholecalciferol (0.0209±0.0089 vs. 0.0304±0.0059 mmol/I, p<0.001) and Fe (0.5664±0.2360 vs. 1.0689±0,4452 µg/dI, p<0.001) were significantly lower in CAD patients. In addition, while not statistically significant serum Cu (1.0164±0.2672 vs. 1.1934±0.4164 µg/dI, p=0.073) concentrations were tended to be lower in patients with CAD, whereas serum lead (0.1449±0.0886 vs. 0.1019±0.0644 µg/dI, p=0.069) concentrations tended to be higher.Conclusions: Serum level of trace elements and vitamins may be changed in patients with CAD. In this relatively small study we found that serum levels of retinol, tocopherol, cholecalciferol, iron and copper may be lower whereas serum lead concentrations may be increased in patients with CAD.
Our data have demonstrated that HD patients exhibit increased oxidative DNA damage and decreased antioxidant activity. We propose that endothelial function is negatively correlated with 8-OHdG/dG ratio and positively correlated with antioxidant enzymes. To our knowledge, this is the first study to demonstrate the inverse relationship between endothelial function and plasma oxidative DNA damage in HD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.