In this study, it is aimed to evaluate plasticity model prediction performance for plastic behavior of materials using a uniaxial tensile test. For this purpose, von Mises, Hill-48, Hill-93, Barlat-89 and Hu-2003 plasticity models are studied, and DC04, DP780, 6000 series aluminum alloy are used as materials. Tensile tests are performed with three directions (rolling, diagonal, transverse), and mechanical properties of materials are obtained. In addition, anisotropy coefficients of materials are calculated by uniaxial tensile tests. Validation of plasticity models is performed using obtained material parameters. Yield locus and yield stresses-anisotropy coefficients depends on directions are used in evaluation of plasticity models. As a result of this study, Hu-2003 showed the best modeling performance for all materials.
DisclaimerAll the opinions and statements expressed in the papers are on the responsibility of author(s) and are not to be regarded as those of the journal of Research on Engineering Structures and Materials (RESM) organization or related parties. The publishers make no warranty, explicit or implied, or make any representation with respect to the contents of any article will be complete or accurate or up to date. The accuracy of any instructions, equations, or other information should be independently verified. The publisher and related parties shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with use of the information given in the journal or related means.Published articles are freely available to users under the terms of Creative Commons Attribution -NonCommercial 4.0 International Public License, as currently displayed at here (the "CC BY -NC").
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.