TSH and thyroid antibody positivity were not related with metabolic measures. Low-normal FT4 had an inverse association with HOMA-IR even after adjustment for confounders.
Oxidative DNA damage, caused by either endogenous or exogenous sources of reactive oxygen species (ROS), has been linked several diseases including Graves' disease (GD). 7,8-Dihydro-8-oxoguanine (8-oxoG) is a major lesion produced by ROS and is considered a key biomarker of oxidative DNA damage. In humans, 8-oxoG is mainly repaired by 8-oxoguanine DNA N-glycosylase-1 (hOGG1), which is an essential component of the base excision repair (BER) pathway. The functional studies showed that hOGG1 Ser326Cys polymorphism is associated with the reduced DNA repair activity and increased risk for some oxidative stress-related diseases. In this study, we firstly investigated hOGG1 Ser326Cys polymorphism in GD. According to our results, Cys/Cys genotype frequency in the GD patients (23.4%) was significantly higher than the controls (9.2%). Cys/Cys genotype had an 3.5-fold [95% CI (confidence interval): 2.10-6.01, p < 0.001] the Cys allele had 1.83-fold (95% CI: 1.43-2.34, p < 0.001) increase in the risk for developing GD. Our results suggest that Ser326Cys polymorphism of the hOGG1 gene is associated with GD risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.