This article is designed to demonstrate that electric roads are an affordable way to electrify all forms of road transport—not only cars, but also buses and trucks. Electric roads represent a way to power electric vehicles without relying solely on batteries. The idea is that when an electric vehicle reaches an electric road, it stops using power from the battery and instead uses power directly from the road itself. The primary challenge for electric vehicles is still the perception of a compromised quality of life in owning an electric vehicle due to a limited range compared with petrol and diesel cars, today. This paper introduces a new technology, currently experiencing rapid development, that can not only overcome range anxiety but make electric vehicles better, in terms of range, than petrol and diesel cars today. Furthermore, not only can this research help to arrange this, but it can also help, for the first time, to cost-effectively electrify heavy-duty transport, such as trucks and buses, which would be a huge breakthrough in terms of sustainability, as it is very important to start supplying electricity to heavy-duty vehicles. The case study provides a very hypothetical example of a trip with and without an electric road, covering a total of 26,011 km of highways and main roads. The results indicate that building electric roads is cheaper than many other alternatives. If a large battery is replaced with a smaller battery for each new vehicle sold, after 3 years, enough savings will be made to electrify all highways and main roads in Turkey. This paper can help transport operators and policymakers develop strategies to accelerate the adoption of electric vehicles by appropriately implementing electric road infrastructure.
The focus of this manuscript is on two-dimensional mixed convection non-Newtonian nanofluid flow near stagnation point over a stretched surface with convectively heated boundary conditions. The modeled equation representing nonlinear flow is transformed into a system of ordinary differential equations by implementing appropriate similarity transformations. The generated structure is numerically solved by applying the bvp4c method. Consequences of various involved parameters, e.g., stretching parameter, mixed convection parameter, thermophoresis parameter, Brownian movement parameter, Lewis number, Weissenberg number, Prandtl number, Biot number, buoyancy ratio parameter, mass and heat transport rates on temperature and velocity, the stretched surface, and nanoparticle concentration patterns are analyzed. Outcomes are shown graphically and displayed in tables. Velocity fluctuations are responded to by growing parameters of mixed convection and Weissenberg number. Concentration and thermal fields are also discovered for the Prandtl number. There are also flow line diagrams to analyze the behavior.
This comparative study inspects the MHD three-dimensional revolving flow and temperature transmission of a radiative stretching surface. The flow of nanofluid is modeled using the Tiwari and Das model. Water is the base fluid, and the nanoparticles are composed of two different types of nanoparticle, i.e., gold and silver (Au and Ag). The non-radiative heat flow notion is examined in a temperature field that results in a nonlinear energy equation. Conformist transformations are used to generate a self-similar arrangement of the leading differential system. The resulting system has an intriguing temperature ratio constraint, which shows whether the flow has a little or significant temperature differential. By using a powerful mathematical technique, numerical results are obtained. The solutions are influenced by both stretching and rotation. The difference in velocity constituents with the elements’ volume fraction is non-monotonic. Results for the rotating nanofluid flow and heat transfer properties for both types of nanoparticles are highlighted with graphs. The impact of physical concentrations, such as heat flux rates and skin friction constants, are examined at the linear extending surface and clarified graphically. Ag-water nanofluid has a high-temperature transfer constant compared to Au-water nanofluid. The velocity profile was also discovered to have a parabolic distribution shape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.