Legionella pneumophila, the causative agent of Legionnaires' disease, is known to colonise and frequently grow in cooling tower waters. Disease is acquired by inhaling aerosol contaminated by legionellae. Determination of the count of Legionella pneumophila in cooling tower waters may, therefore, be useful for risk assessment. In our survey, 103 water samples from 50 cooling towers were examined over a five-year period to indicate the seasonal distribution and the ecology of L. pneumophila, as regards temperature and pH. L. pneumophila serogroup 1 was found in 44% of the isolated strains, which is primarily responsible for the majority of Legionnaires' disease. The large majority of examined towers had levels of L. pneumophila in the high-risk category. These cooling towers have been linked to many outbreaks of Legionnaires' disease.
The microbiological quality in dental unit waterlines (DUWLs) is considered to be important because patients and dental staff with suppressed immune systems are regularly exposed to water and aerosols generated from dental units (DUs). Opportunistic pathogens like Pseudomonas, Legionella, Candida, and Aspergillus can be present in DUWLs, while during consultations, bioaerosols can be dispersed in the air, thus resulting in effects on microbiological quality of indoor air. This present study represents microbiological air and water quality in dental offices (DOs) and also concerns the relationship between the quality of DO air and dental unit water. This study aimed to assess both the microbial quality of dental unit water and the indoor air in 20 DOs and to survey the effect on the quality of the indoor air with the existing microorganisms in dental unit water. Fourteen out of 20 (70 %) DUWLs were found to be contaminated with a high number of aerobic mesophilic heterotrophic bacteria. In terms of bacterial air contamination levels, in 90 % of DOs, a medium level (<500 colony-forming units (CFU)/m(3)) of contamination was determined, while in terms of microfungal air contamination, in all DOs, a low level (<100 CFU/m(3)) of contamination was determined. Potential infection or allergen agents, such as Pseudomonas, Micrococcus, Staphylococcus, Alternaria, Cladosporium, Penicillium, Aspergillus, and Paecilomyces were isolated from water and air samples. This study's determination of contamination sources and evaluation of microbial load in DOs could contribute to the development of quality control methods in the future.
A hundred Enterococcus strains were isolated from seawater samples collected from coastal areas of Istanbul. Isolates were identified to the species level using standard biochemical tests specified by Facklam and Collins. The species distribution was as follows Enterococcus faecalis (96%), Enterococcus gallinarum (3%) and Enterococcus solitarius (1%). The resistance of bacteria to both heavy metals (zinc [Zn], iron [Fe], cadmium [Cd], chrome [Cr], cobalt [Co]) and antibiotics (ampicillin 10 microg [AP], penicillin G 10 Units [PG], gentamycin 10 microg [GM], streptomycin 10 microg [S], chloramphenicol 10 microg [C], erythromycin 15 microg [E], kanamycin 30 microg [K], amikacin 30 microg [AK], nalidixic acid 30 microg [NA], and vancomycin 30 microg [VA]) was evaluated. None of the strains was resistant to VA. It was found that among the 100 isolates, those that exhibit resistance to antibiotics, particularly NA, S and K, were also resistant all the heavy metals tested. To our knowledge this is the first report focusing on determination of resistance of environmental enterococci found in Istanbul against heavy metals and antibiotics. Thus, combined expressions of antibiotic and heavy metal resistance may help to reinforce ecological and epidemiological studies and to determine the role of these strains in antibiotic and heavy metal resistance dissemination.
The water used in dental unit waterlines (DUWLs) acts as a coolant for the high-speed equipment and as an irrigant during dental treatments. There are kind of water tanks. DUWLs provide a favorable environment for microbial biofilm and multiplation primarily due to the high surface in the tubing and the character of fluid dynamics in narrow, smooth-walled waterlines. Biofilms can harbour opportunist pathogens such as Legionella sp., Pseudomonas sp. Several studies have shown that DUWLs have high levels of microbial contamination. Presence of high level of microbial contamination is an important problem for dentists and dental patients who are immunocompromised. We collected water samples from DUWLs of 20 private dental offices. We have determined that only 2 (3.4%) out of 59 dental unit water samples were found to meet the standard (<200 CFU.ml(-1)) for DUWLs water quality by American Dental Association (ADA). Of the 59 water samples examined, 14 (24%) were positive for Pseudomonas sp. and 18 (30.5%) were positive for fungi. The most common 14 bacterial strains and seven fungi were isolated. Of bacterial strains, 57.1% were identified: Majority of the bacterial species isolated from our samples was identified as Pseudomonas fluorescens, Pasteurella haemolytica, Photobacterium damsela, Ochrobacter anthropi, Moraxella sp., Aspergillus flavus, Penicillium expansum. Legionella sp. were not detected in all water samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.