Temporal attention is the selection and prioritization of information at a specific moment. Exogenous temporal attention is the automatic, stimulus driven deployment of attention. The benefits and costs of exogenous temporal attention on performance have not been isolated. Previous experimental designs have precluded distinguishing the effects of attention and expectation about stimulus timing. Here, we manipulated exogenous temporal attention and the uncertainty of stimulus timing independently and investigated visual performance at the attended and unattended moments with different levels of temporal uncertainty. In each trial, two Gabor patches were presented consecutively with a variable stimulus onset. To drive exogenous attention and test performance at attended and unattended moments, a task-irrelevant, brief cue was presented 100 ms before target onset, and an independent response cue was presented at the end of the trial. Exogenous temporal attention slightly improved accuracy, and the effects varied with temporal uncertainty, suggesting a possible interaction of temporal attention and expectations in time.
The timing of brief stationary sounds has been shown to alter different aspects of visual motion, such as speed estimation. These effects of auditory timing have been explained by temporal ventriloquism and auditory dominance over visual information in the temporal domain. Although previous studies provide unprecedented evidence for the multisensory nature of speed estimation, how attention is involved in these audiovisual interactions remains unclear. Here, we aimed to understand the effects of spatial attention on these audiovisual interactions in time. We utilized a set of audiovisual stimuli that elicit temporal ventriloquism in visual apparent motion and asked participants to perform a speed comparison task. We manipulated attention either in the visual or auditory domain and systematically changed the number of moving objects in the visual field. When attention was diverted to a stationary object in the visual field via a secondary task, the temporal ventriloquism effects on perceived speed decreased. On the other hand, focusing attention on the auditory stimuli facilitated these effects consistently across different difficulty levels of secondary auditory task. Moreover, the effects of auditory timing on perceived speed did not change with the number of moving objects and existed in all the experimental conditions. Taken together, our findings revealed differential effects of allocating attentional resources in the visual and auditory domains. These behavioral results also demonstrate that reliable temporal ventriloquism effects on visual motion can be induced even in the presence of multiple moving objects in the visual field and under different perceptual load conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.