Purpose: Brucellosis is a worldwide zoonotic disease and still constitutes a major public health problem. In the study we claimed to identify Brucella species from clinical samples of patients with active brucellosis from Van region of Eastern Anatolia and to determine in vitro antimicrobial susceptibilities of these strains to commonly used anti-Brucella agents and a possible new alternative tigecycline.Materials and Methods: A total of 56 Brucella isolates were enrolled the study and the identification of the isolates were based on conventional methods. In vitro activities of antimicrobials were evaluated by the E test method.Results: All isolates were identified as B. melitensis. MIC90 values of doxycycline, streptomycin, rifampin, trimethoprim-sulfamethoxazole and tigecycline were 0.064 mg/L, 1 mg/L, 2 mg/L, 0.125 mg/L and 0.094 mg/L, respectively. Tigecycline had low MIC50 and MIC90 values against all B. melitensis strains; the highest MIC observed was 0.25 μg/mL.Conclusion: Our data suggest that tigecycline can be a therapeutic alternative option for the treatment of brucellosis.
It is well known that paraoxonase-1 (PON1) activity may decrease during the course of infection and inflammation. The aim of this study was to investigate serum PON1 activity, oxidative status, and thiols levels in patients with acute brucellosis. In addition, we investigated the PON1 phenotype in patients with acute brucellosis. Thirty patients with acute brucellosis and 35 healthy controls were enrolled. Serum paraoxonase and arylesterase activities, thiols levels, lipid hydroperoxide levels, total antioxidant capacity (TAC), total oxidant status (TOS) and oxidative stress index (OSI) were determined. Serum basal and salt-stimulated paraoxonase-arylesterase activities, TAC levels and thiols levels were significantly lower in patients with acute brucellosis than controls (for all, p < 0.05), while LOOH levels, TOS levels, and OSI values were significantly higher (for all, p < 0.05). We concluded that oxidative stress is increased, while serum PON1 activity is decreased in patients with acute brucellosis. These results indicate that lower PON1 activity is associated with oxidant-antioxidant imbalance.
Background: A limited number of antibiotics are recommended for the therapy of Stenotrophomonas maltophilia infections due to therapy difficulties caused by its numerous mechanisms of resistance. Objectives: In this study conducted over a period of approximately 5 years we aimed to determine resistance rates of S. maltophilia based on drug classification recommended by Clinical and Laboratory Standards Institute. Methods: A total of 118 S. maltophilia strains isolated from various clinical specimens between January 2006 and June 2012 were included in the study. BD Phoenixautomated microbiology system (Becton Dickinson, USA) was utilized for species level identification and antibiotic susceptibility testing. Results: Sixty seven of S. maltophilia strains were isolated from tracheal aspirate isolates, 17 from blood, 10 from sputum, 10 from wound and 14 from other clinical specimens. Levofloxacin was found to be the most effective antibiotic against S. maltophilia strains with resistance rate of 7.6%. The resistance rates to other antibiotics were as follows: chloramphenicol 18.2%, trimethoprim-sulfamethoxazole 20.3% and ceftazidime 72%.
Conclusion:The study revealed that S. maltophilia is resistant to many antibiotics. The treatment of infections caused by S. maltophilia should be preferred primarily as levofloxacin, chloramphenicol, and TMP-SXT, respectively.
Purpose: Brucellosis is a worldwide zoonotic disease and still constitutes a major public health problem. In this study, we aimed to identify biovars of Brucella strains isolated from clinical specimens taken from brucellosis patients from the Eastern Anatolia region as well determine the susceptibility of these isolates to tigecycline and azithromycin, drugs that may serve as alternatives to the conventional drugs used in the therapy.Materials and methods: Seventy-five Brucella spp. isolates were included in the study. All strains were identified by both conventional and molecular methods. Brucella Multiplex PCR kit (FC-Biotech, Code: 0301, Turkey) and B. melitensis biovar typing PCR kit (FC-Biotech, Code: 0302, Turkey) were used for molecular typing. Antimicrobial susceptibilities of all strains were determined by E-tests.Results: By conventional biotyping, 73 strains were identified as B. melitensis biovar 3 and two strains as B. abortus biovar 3. Molecular typing results were compatible with conventional methods. The MIC50 and MIC90 values of doxycycline were 0.047 and 0.094; tigecycline 0.094 and 0.125; trimethoprim/sulfamethoxazole 0.064 and 0.19; ciprofloxacin 0.19 for both; streptomycin 0.75 and 1; rifampin 1 and 2 and azithromycin 4 and 8. According to the MIC values, doxycycline was found to be the most effective antibiotic, followed by tigecycline, trimethoprim-sulfamethoxazole and ciprofloxacin.Conclusion: Currently recommended antibiotics for the treatment of brucellosis such as doxycycline, rifampin, streptomycin, trimethoprim-sulfamethoxazole and ciprofloxacin were found to be still effective. While our results showed that tigecycline can be used an alternative agent in the treatment of brucellosis, azithromycin has not been confirmed as an appropriate agent for the treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.