Effects of tungsten and boron contents on the thermal properties and microhardness of W-Fe-B metallic glass system were studied. Thin foils, with thicknesses of 20 and 100 lm, of the alloys were produced by piston and anvil method in an arc furnace. The structures of the foils were investigated by X-ray diffraction. Thermal stabilities of the alloys were examined by using differential scanning calorimetry. 20-lm-thick foils of all the alloys were determined to be fully amorphous, but crystalline phases were detected in the 100-lm-thick foils. It was found that crystallization temperatures of the alloys are between 1060 and 1177 K. Tungsten and boron content increases improve the crystallization temperature and microhardness of the alloys significantly, but deteriorate the glass forming ability of the alloys. It was also observed that for constant Fe content, increasing tungsten content to the level higher than that of boron content does not result in any further improvement in crystallization temperature, but improves glass forming ability significantly. The alloy containing highest total amount of tungsten and boron, W 35 Fe 35 B 30 , has the highest crystallization temperature, 1177 K, and microhardness, 1634 HV.
Glass forming ability (GFA), thermal stability and microhardness of Ni51−xCuxW31.6B17.4 (x = 0, 5) metallic glasses have been investigated. For each alloy, thin sheets of samples having thickness of 20 µm and 100 µm were synthesized by piston and anvil method in a vacuum arc furnace. Also, 400 µm thick samples of the alloys were synthesized by suction casting method. The samples were investigated by X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). Crystallization temperature of the base alloy, Ni51W31.6B17.4, is found to be 996 K and 5 at.% copper substitution for nickel increases the crystallization temperature to 1063 K, which is the highest value reported for Ni-based metallic glasses up to the present. In addition, critical casting thickness of alloy Ni51W31.6B17.4 is 100 µm and copper substitution does not have any effect on critical casting thickness of the alloys. Also, microhardness of the alloys are found to be around 1200 Hv, which is one of the highest microhardness values reported for a Ni-based metallic glass until now.
CoWB based composites were produced by annealing Ni33.6Co23.2Zr0.5Ta4W23.7B15 bulk metallic glass above the crystallization temperature. The effect of annealing on the microstructure of the composites was investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Microhardness (Hv) and indentation fracture toughness (KC) of the composites were also measured. Microstructural examinations revealed that the first precipitated phase as a result of annealing is a nickel solid solution. As the annealing time is increased, the CoWB and the nickel solid solution begins to precipitate. If the annealing time is increased further, the CoWB remains stable, while the nickel solid solution transforms into the Ni3Ta. The microhardness of the as-cast alloy was determined to be 1190 HV. As a result of annealing, composites with a microhardness of around 1400 HV were obtained due to the precipitation of CoWB. KC of the composite with the maximum hardness was determined to be ~3 MPa.m1/2. The effect of microstructure on the mechanical properties of the composites is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.