Articular cartilage is comprised of two main components, the extracellular matrix (ECM) and the pericellular matrix (PCM). The PCM helps to protect chondrocytes in the cartilage from mechanical loads, but in patients with osteoarthritis, the PCM is weakened, resulting in increased chondrocyte stress. As chondrocytes are responsible for matrix synthesis and maintenance, it is important to understand how mechanical loads affect the cellular responses of chondrocytes. Many studies have examined chondrocyte responses to in vitro mechanical loading by embedding chondrocytes in 3-D hydrogels. However, these experiments are mostly performed in the absence of PCM, which may obscure important responses to mechanotransduction. Here, drop-based microfluidics is used to culture single chondrocytes in alginate microgels for cell-directed PCM synthesis that closely mimics the in vivo microenvironment. Chondrocytes formed PCM over 10 days in these single-cell 3-D microenvironments. Mechanotransduction studies were performed, in which single-cell microgels mimicking the cartilage PCM were embedded in high-stiffness agarose. After physiological dynamic compression in a custom-built bioreactor, microgels exhibited distinct metabolomic profiles from both uncompressed and monolayer controls. These results demonstrate the potential of single cell encapsulation in alginate microgels to advance cartilage tissue engineering and basic chondrocyte mechanobiology.
Osteoarthritis, the most common degenerative joint disease, occurs more frequently in joints that have sustained injury. Currently, osteoarthritis is diagnosed with imaging that finds radiographic changes after the disease has already progressed to multiple tissues. The primary objective of this study was to compare potential metabolomic biomarkers of joint injury between the synovial fluid and serum in a mouse model of post-traumatic osteoarthritis. The secondary objective was to gain insight into the pathophysiology of osteoarthritis by examining metabolomic profiles after joint injury. 12-week-old adult female C57BL/6 mice (n=12) were randomly assigned to control, day 1 post injury, or day 8 post injury groups. Randomly selected stifle (i.e., knee) joints were placed into a non-invasive injury apparatus and subjected to a single dynamic axial compression causing anterior translation of the tibia relative to the femur to tear the anterior cruciate ligament. At days 1 and 8 post injury, serum was extracted then mice were immediately euthanized prior to synovial fluid collection. Metabolites were extracted and analyzed by liquid chromatography coupled to mass spectrometry. We detected ~2500 metabolites across serum and synovial fluid. Of these metabolites 179 were positively correlated and 51 were negatively correlated between synovial fluid and serum, indicating potential for the development of metabolomic biomarkers. Synovial fluid appeared to capture differences in metabolomic profiles between injured mice at both day 1 and 8 after injury whereas serum did not. However, synovial fluid and serum were distinct at both days 1 and 8 after injury. In the synovial fluid, pathways of interest across different time points mapped to amino acid synthesis and degradation, bupropion degradation, and the tRNA charging pathway. In the serum, notable pathways across time points were amino acid synthesis and degradation, the phospholipase pathway, and nicotine degradation. These results provide a rich picture of the injury response at early time points following traumatic joint injury. Furthermore, the correlations between synovial fluid and serum metabolites suggest that there is potential to gain insight into intra-articular pathophysiology through analysis of serum metabolites.
Osteoarthritis, the most common degenerative joint disease, occurs more frequently in joints that have sustained injury. Currently, osteoarthritis is diagnosed with imaging that finds radiographic changes after the disease has already progressed to multiple tissues. The primary objective of this study was to compare potential metabolomic biomarkers of joint injury between the synovial fluid and serum in a mouse model of post-traumatic osteoarthritis. The secondary objective was to gain insight into the pathophysiology of osteoarthritis by examining metabolomic profiles after joint injury. 12-week-old adult female C57BL/6 mice (n=12) were randomly assigned to control, day 1 post injury, or day 8 post injury groups. Randomly selected stifle (i.e., knee) joints were placed into a non-invasive injury apparatus and subjected to a single dynamic axial compression causing anterior translation of the tibia relative to the femur to tear the anterior cruciate ligament. At days 1 and 8 post injury, serum was extracted then mice were immediately euthanized prior to synovial fluid collection. Metabolites were extracted and analyzed by liquid chromatography coupled to mass spectrometry. We detected ~2500 metabolites across serum and synovial fluid. Of these metabolites 179 were positively correlated and 51 were negatively correlated between synovial fluid and serum, indicating potential for the development of metabolomic biomarkers. Synovial fluid appeared to capture differences in metabolomic profiles between injured mice at both day 1 and 8 after injury whereas serum did not. However, synovial fluid and serum were distinct at both days 1 and 8 after injury. In the synovial fluid, pathways of interest across different time points mapped to amino acid synthesis and degradation, bupropion degradation, and the tRNA charging pathway. In the serum, notable pathways across time points were amino acid synthesis and degradation, the phospholipase pathway, and nicotine degradation. These results provide a rich picture of the injury response at early time points following traumatic joint injury. Furthermore, the correlations between synovial fluid and serum metabolites suggest that there is potential to gain insight into intra-articular pathophysiology through analysis of serum metabolites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.